

1	REPÚBLICA DE COLOMBIA
2	
3 4	
4 5	
5 6 7	MINISTERIO DE MINAS Y ENERGÍA
7	(MME)
Ω	(IAIIAI)
8 9	
10	
11	
12	UNIDAD DE PLANEACIÓN MINERO ENERGÉTICA
13	(UPME)
14	(*·/
15	
16	
17	
18	CONVOCATORIA PÚBLICA UPME 10 DE 2021
19	(UPME 10-2021)
20	
21	
22	
23	,
24	SELECCIÓN DE UN INVERSIONISTA Y UN INTERVENTOR PARA EL DISEÑO, ADQUISICIÓN DE LOS SUMINISTROS, CONSTRUCCIÓN, OPERACIÓN Y
25	ADQUISICION DE LOS SUMINISTROS, CONSTRUCCION, OPERACION Y
26	MANTENIMIENTO DE LA SUBESTACIÓN CORRIENTES 230 KV Y LÍNEAS DE
27	TRANSMISIÓN ASOCIADAS.
28	
29 30	
31	
32	DOCUMENTOS DE SELECCIÓN DEL INVERSIONISTA
33	DOGGINENTOG DE GEELGGIGN DEL INVERGIONIGTA
34	ANEXO No. 1
35	
36	DESCRIPCIÓN Y ESPECIFICACIONES TÉCNICAS DEL PROYECTO
37	
38	
39	V 1.0
40	
41	
42	Donaté D. C. Israila de 0005
43	Bogotá D. C., junio de 2025

Página 1 de 59

1		TABLA DE CONTENIDO	
2			
3	ANEXO		1
4		RIPCIÓN Y ESPECIFICACIONES TÉCNICAS DEL PROYECTO	1
5	1	CONSIDERACIONES GENERALES	5
6 7	1.1 1.2	Requisitos Técnicos Esenciales	5
8	1.∠ 2	Definiciones DESCRIPCIÓN DEL PROYECTO	6
9	2.1	Objeto del Proyecto.	6 6
9 10	2.1	Descripción de Obras en las Subestaciones	9
11	2.2.1	Descripción de Obras en la Subestación Corrientes 230 kV.	9
12	2.3	Puntos de Conexión del Proyecto	10
13	2.3.1	En la Subestación Corrientes 230 kV.	10
14	2.3.2	En la línea San Carlos - Esmeralda230 kV.	11
15	3	ESPECIFICACIONES TÉCNICAS GENERALES	11
16	3.1	Parámetros del Sistema	12
17	3.2	Nivel de Corto Circuito	13
18	3.3	Materiales	13
19	3.4	Efecto Corona, Radio-interferencia y Ruido Audible	13
20	3.5	Licencias, Permisos, Compromisos y Contrato de Conexión	14
21	3.6	Pruebas en Fábrica	14
22	4	ESPECIFICACIONES PARA LAS LÍNEAS DE TRANSMISIÓN DE 230 kV	15
23	4.1	General	15
24	4.2	Ruta de las Líneas de Transmisión	17
25	4.3	Longitud de las Líneas	18
26	4.4	Especificaciones de diseño y construcción Líneas de 230 kV	18
27	4.4.1	Aislamiento	18
28	4.4.2	Conductores de Fase	19
29	4.4.3	Cable(s) de Guarda	20
30	4.4.4	Puesta a Tierra de las Líneas	21
31	4.4.5	Transposiciones de Línea	22
32 33	4.4.6 4.4.7	Estructuras Localización de Estructuras	22 23
33	4.4.7 4.4.8	Sistema Antivibratorio, Amortiguadores y Espaciadores - Amortiguadores	23 23
35	4.4.9	Cimentaciones	24
36		Canalizaciones, cajas e instalación de cables para tramos de Líneas subterráne	
37	4.4.10	subfluviales	24
38	4 4 11	Señalización Aérea	25
39		Desviadores de vuelo para aves	25
40		Obras Complementarias	26
41	4.5	Informe Técnico	26
42	5	ESPECIFICACIONES PARA LA SUBESTACIÓN	26
43	5.1	General	26
44	5.1.1	Predio de las Subestación	27
45	5.1.2	Espacios de Reserva	28
46	5.1.3	Conexiones con Equipos Existentes	30
		Página 2 de 59	

15/07/2024

1	5.1.4	Servicios Auxiliares	30
2	5.1.5	Infraestructura y Módulo Común	30
3	5.2	Normas para Fabricación de los Equipos	32
4	5.3	Condiciones Sísmicas de los equipos	32
5	5.4	Procedimiento General del Diseño	33
6		Los documentos de Ingeniería Básica	34
7		Memorias de cálculo electromecánicas	34
8		Especificaciones equipos	35
9		Características técnicas de los equipos	35
10		Planos electromecánicos	35
11	5.4.1.5	Planos de obras civiles	36
12		Estudios y trabajos de campo	36
13		Los documentos de la Ingeniería de Detalle	36
14		Cálculos detallados de obras civiles	37
15		Planos de obras civiles	38
16		Diseño detallado electromecánico	38
17		Estudios del Sistema	40
18		Distancias de Seguridad	41
19	5.5	Equipos de Potencia	41
20		Interruptores	41
21	5.5.2	Descargadores de Sobretensiones	42
22	5.5.3	Seccionadores y Seccionadores de Puesta a Tierra	43
23		Transformadores de Tensión	44
24		Transformadores de Corriente	44
25	5.5.6	Equipo GIS o Híbrido	45
26	5.5.7	Sistema de Puesta A Tierra	46
27	5.5.8	Apantallamiento de la Subestación	46
28	5.6	Equipos de Control y Protección	47
29	5.6.1	Sistemas de Protección	47
30	5.6.2	Sistema de Automatización y Control de la Subestaciones	49
31		Características Generales	50
32	5.6.3	Unidad de medición fasorial sincronizada - medidores multifuncionales	52
33	5.6.4	Controladores de Bahía	53
34	5.6.5	Controlador de los Servicios Auxiliares	53
35	5.6.6	Switches	54
36	5.6.7	Interfaz Nivel 2 - Nivel 1	54
37	5.6.8	Equipos y Sistemas de Nivel 2	55
38	5.6.8.1	Controlador de la Subestación	55
39	5.6.8.2	Registradores de Fallas	55
40	5.6.8.3	Interfaz Hombre - Máquina IHM de la Subestación	55
41	5.6.9	Requisitos de Telecomunicaciones	56
42	5.7	Obras Civiles	56
43	5.8	Malla de Puesta a Tierra y Apantallamiento	57
44	6	ESPECIFICACIONES PARA LA PUESTA EN SERVICIO DEL PROYECTO	57
45	6.1	Pruebas y Puesta en Servicio	57
46	6.2	Información Requerida por CND para la Puesta en Servicio	58

Página 3 de 59

1	7	ESPECIFICACIONES DE OPERACIÓN	59
2	8	INFORMACIÓN DETALLADA PARA EL PLANEAMIENTO	59
3	9	INFORMACIÓN ESPECÍFICA	59
4	10	FIGURAS	59
5			

ANEXO NO. 1 – ESPECIFICACIONES TÉCNICAS DEL PROYECTO

1 CONSIDERACIONES GENERALES

Las expresiones que figuren en mayúsculas, que no se encuentren expresamente definidas en el presente documento, tendrán el significado que se les atribuye en los Documentos de Selección del Inversionista - DSI.

Toda mención efectuada en este documento a "Condiciones Generales", "Anexo", "Formulario", "Formato", "Literal", y "Numeral", se deberá entender efectuada a las Condiciones Generales, Anexos, Formularios, Formatos, Literales, y Numerales de este documento, respectivamente, salvo indicación expresa en sentido contrario.

Las expresiones que figuren en mayúsculas y que no se encuentren expresamente definidas en el presente documento o en los DSI, corresponden a normas legales u otras disposiciones jurídicas colombianas.

Las especificaciones de diseño, construcción, montaje y las características técnicas de los equipos e instalaciones deben cumplir con los requisitos técnicos establecidos en el presente Anexo No. 1 de los DSI, en el Código de Redes de la CREG (Resolución CREG 025 de 1995 y sus actualizaciones, en especial CREG 098 de 2000), los acuerdo CNO cuando apliquen y en el RETIE y todas sus modificaciones vigentes en la fecha de ejecución de los diseños. Las citas, numerales o tablas del RETIE que se hacen en este Anexo corresponden a la última versión (Resolución MME 40117 del 2 de abril de 2024). En los aspectos a los que no hacen referencia los documentos citados, el Transmisor deberá ceñirse a lo indicado en criterios de ingeniería y normas internacionales de reconocido prestigio, copia de los cuales deberán ser relacionados, informados y documentados al Interventor. Los criterios de ingeniería y normas específicas adoptados para el Proyecto deberán cumplir, en todo caso, con lo establecido en los DSI, en el Código de Redes y en los reglamentos técnicos que expida el Ministerio de Minas y Energía - MME. Adicionalmente, se deberá considerar las condiciones técnicas existentes en los puntos de conexión de tal forma que los diferentes sistemas sean compatibles y permitan la operación según los estándares de seguridad, calidad y confiabilidad establecidos en la regulación.

1.1 Requisitos técnicos esenciales

De acuerdo con lo establecido en la última versión del RETIE, vigente a la fecha de apertura de esta Convocatoria, Resolución del MME 40117 del 2 de abril de 2024, Libro 3, Título 2: "El diseño, construcción, ampliación, modificación, remodelación e inspección de toda instalación eléctrica objeto del RETIE, así como la operación, el mantenimiento y cualquier intervención o manipulación de la instalación o sus equipos, debe ser dirigida, supervisada y ejecutada por personas técnica y legalmente competentes, que según la ley Colombiana les faculte para efectuar esa actividad; quienes además deben cumplir con todos los requisitos del presente Reglamento y demás normas legales o reglamentarias; así como, la jurisprudencia que le apliquen."

Página 5 de 59

Como requisito general, de mandatorio cumplimiento, aplicable a todos los aspectos técnicos y/o regulatorios que tengan que ver con el RETIE, con el Código de Redes, con los acuerdos del CNO, con normas técnicas nacionales o internacionales y con resoluciones de la Comisión de Regulación de Energía y Gas - CREG y del Ministerio de Minas y Energía - MME, se establece que, de producirse una revisión o una actualización de cualquiera de los documentos mencionados, antes del inicio de los diseños según Cronograma presentado por el Transmisor y aprobado por la UPME, la última de estas revisiones o actualizaciones, en cada uno de los aspectos requeridos, primará sobre cualquier versión anterior de los citados documentos.

1.2 Definiciones

Las expresiones que figuran con letra mayúscula inicial tendrán el significado establecido en el Numeral 1.1 de las Condiciones Generales de los DSI.

Igualmente, para efectos de esta convocatoria y este documento que lo integra, se utilizarán, además, las siguientes abreviaciones:

- CNO: Centro Nacional de Operaciones.
- SCADA: Supervisory Control and Data Acquisition (Control de Supervisión y Adquisición de Datos).
- SIN: Sistema Interconectado Nacional.
- STN: Sistema de Transmisión Nacional
- STR: Sistema de Transmisión Regional

2 DESCRIPCIÓN DEL PROYECTO

2.1 Objeto del Proyecto.

La presente Convocatoria Pública, que se rige por estos DSI, tiene por objeto seleccionar un Inversionista que se encargue de realizar el Proyecto que comprende, entre otras posibles, las siguientes actividades:

 (i) La definición de las especificaciones técnicas de la subestación Corrientes 230 kV y líneas de transmisión asociadas.

 (ii) La preconstrucción de las obras que requiera el Proyecto, (incluyendo firma del Contrato con la Fiducia para contratar la Interventoría, diseños, servidumbres, estudios, Contratos de Conexión, licencias ambientales y demás permisos, licencias o coordinaciones interinstitucionales requeridas para iniciar la construcción, costos y viabilidad ambiental del proyecto);

(iii) La construcción de las obras necesarias (incluyendo las resultantes de los Contratos de Conexión y cualquier obra que se requiera para la viabilidad ambiental del Proyecto, garantizando desde el punto de vista jurídico, la disponibilidad de los predios requeridos para la construcción de tales obras); y

Página 6 de 59

(iv) La administración, operación y mantenimiento del Proyecto durante veinticinco (25) años contados desde la Fecha Oficial de Puesta en Operación.

En términos generales, el Proyecto consiste en el diseño, adquisición de los suministros, construcción, pruebas, puesta en servicio, operación y mantenimiento de las obras asociadas al Proyecto subestación Corrientes 230 kV (inicialmente denominado San Lorenzo) y líneas de transmisión asociadas, definido en el Plan de Expansión de Referencia Generación y Transmisión 2015 – 2029, adoptado por el Ministerio de Minas y Energía mediante Resolución 40095 del 1 de febrero de 2016, modificada por las resoluciones del Ministerio de Minas y Energía 40404 del 15 de mayo de 2017, 40039 del 11 de febrero de 2021, 40492 del 21 de noviembre de 2022 y 400513 del 27 de noviembre de 2024. En esta última resolución, se formaliza el cambio de nombre a Corrientes y establece que el Proyecto debe entrar en operación a más tardar el 31 de octubre de 2028, siendo esta fecha parte integral del Proyecto, el cual comprende:

(i) Construcción de la subestación Corrientes 230 kV en configuración interruptor y medio, con dos (2) bahías de línea y dos (2) bahías de transformación con sus respectivos cortes centrales para conformar dos (2) diámetros completos a 230 kV, a ubicarse en inmediaciones del Municipio de Cocorná en el departamento de Antioquia.

(ii) Construcción de una (1) línea de doble circuito a 230 kV o dos (2) líneas independientes a 230 kV, desde la Subestación Corrientes 230 kV (ítem i del presente numeral), hasta interceptar la línea existente San Carlos - Esmeralda 230 kV, para reconfigurarla en San Carlos - Corrientes - Esmeralda 230 kV. Hacen parte de este alcance las conexiones, desconexiones y adecuaciones requeridas para la reconfiguración mencionada.

(iii) Se deben incluir todos los elementos y adecuaciones tanto eléctricas como físicas necesarias para cumplir con el objeto de la presente Convocatoria durante la construcción, operación y mantenimiento de las obras, garantizando siempre su compatibilidad con la infraestructura existente. Estas acciones incluyen sistemas de control, protecciones, medida, comunicaciones e infraestructura asociada, etc., sin limitarse a estos.

(iv) Los espacios de reserva establecidos en el numeral 5.1.2 del presente documento.

Convocatoria:

1. A las bahías de transformación, en la Subestación Corrientes se conectarán dos (2) bancos

Adicionalmente, las siguientes notas tienen carácter vinculante frente al alcance de la presente

1. A las bahías de transformación, en la Subestación Corrientes se conectarán dos (2) bancos de autotransformadores a 230/115 kV de 180 MVA (3x60 MVA) cada uno, estos dos bancos contarán con una unidad monofásica de respaldo de 60 MVA. Se aclara que estos bancos de transformación y sus respectivas bahías en el lado de baja tensión (115 kV), no hacen parte del objeto de la presente Convocatoria Pública, por tratarse de activos del STR. La frontera entre el Inversionista de la presente Convocatoria y el Inversionista del STR en la Subestación Corrientes, será en los bornes de alta tensión de cada uno de los bancos de transformación.

2. Los Diagramas Unifilares, hacen parte del Anexo No. 1. El Inversionista seleccionado, buscando una disposición con alto nivel de confiabilidad, podrá modificar la disposición de las bahías en los diagramas unifilares, previa revisión y concepto del Interventor, y aprobación por parte de la UPME. Si la propuesta de modificación presentada involucra o afecta a terceros como otros usuarios o propietarios de activos en Subestación (existente o ampliación), deberán establecerse acuerdos previos a la solicitud.

3. En configuración interruptor y medio, cuando una bahía, objeto de la presente Convocatoria Pública, quede en un diámetro incompleto, el cual pueda utilizarse para una ampliación futura, el Transmisor deberá hacerse cargo del enlace entre el corte central y el otro barraje, de tal manera que dicho enlace pueda ser removido fácilmente en caso de instalación de nuevos equipos.

- 4. Corresponde a los involucrados en las Subestaciones, llegar a acuerdos para la ubicación y/o disposición física de equipos en la Subestación. En cualquier caso, se debe garantizar una disposición de alto nivel de confiabilidad.
- 5. Todos los equipos o elementos por instalar, con motivo de la presente Convocatoria Pública UPME, deberán ser completamente nuevos y de última tecnología.
 - 6. Están a cargo del Inversionista seleccionado, todos los elementos necesarios para la construcción, operación y mantenimiento de las obras, como por ejemplo sistemas de control, protecciones, comunicaciones e infraestructura asociada, sin limitarse a estos, y debe garantizar su compatibilidad con la infraestructura existente. En general, el Inversionista se debe hacer cargo de las adecuaciones necesarias para cumplir con el alcance del presente proyecto.
 - 7. En la Página Electrónica de la presente Convocatoria Pública, se encuentra disponible la información técnica y Costos de Conexión remitidos por ISA Intercolombia S.A. E.S.P., con radicado UPME 20241110231372 del 26 de septiembre de 2024 La información específica relacionada con este comunicado (Anexos) pueden ser solicitadas en oficinas de la UPME en los términos señalados en el numeral 9 del presente Anexo No. 1, sin detrimento a lo anterior, el Inversionista podrá consultar a los propietarios de la infraestructura de manera directa. La información suministrada por la UPME no representa ninguna limitante y deberá ser evaluada por el Inversionista para lo de su interés, en concordancia con los numerales 5.5. Estudios Propios del Proponente, y 5.6. Responsabilidad, de las Consideraciones Generales de los DSI de la presente Convocatoria Pública.
 - 8. Hace parte de la presente Convocatoria el suministro, construcción, pruebas, puesta en servicio, operación y mantenimiento del cable de potencia (conductor de fase para la conexión entre las bahías de transformación y los bornes de alta de los transformadores del STR), junto con las obras civiles y elementos necesarios asociados a los cables de potencia (estructuras de apoyo, aisladores, soportes, canalizaciones, protecciones y demás elementos de requerirse). Lo anterior aplica hasta los 200 metros de conductor por fase, sin importar la distancia entre la salida de las bahías de transformación y los bornes de alta de los transformadores del STR.

Página 8 de 59

- 9. La ubicación de la nueva Subestación Corrientes 230 kV deberá cumplir con lo señalado en el numeral 5.1.1. del presente Anexo.

11. El Inversionista seleccionado para la presente Convocatoria, deberá analizar y tomar las

El Inversionista seleccionado deberá hacerse cargo de la selección y adquisición del lote o área,

el diseño, la construcción, la operación y el mantenimiento de las obras descritas en el numeral

La subestación Corrientes 230 kV deberá ser construida en configuración interruptor y medio.

y los equipos a instalar podrán ser convencionales AIS (Air Insulated Substations) o GIS (tomado de la primera letra del nombre en inglés "Gas Insulated Substations" Subestaciones

aisladas en gas SF6) o una solución híbrida, de tipo exterior o interior según sea el caso,

cumpliendo con la normatividad técnica aplicable y todos los demás requisitos establecidos en

precauciones, realizar todos los estudios que apliquen y tomar cualquier medida preventiva

o correctiva en todas las etapas del proyecto, incluida la operación y mantenimiento, con

el fin que no existan afectaciones en el Sistema Interconectado Nacional - SIN por

Subestación lo hubiese declarado antes del inicio de la convocatoria.

cualquier circunstancia que involucre o se derive de sus activos.

2.2.1 Descripción de obras en la subestación Corrientes 230 kV.

Descripción de obras en las subestaciones

2, incluyendo los espacios de reserva definidos.

 10. El Inversionista seleccionado deberá garantizar que los espacios de reserva (no utilizados por el presente Proyecto) en las subestaciones intervenidas, no se verán afectados o limitados para su utilización, por infraestructura (equipos, Línea, edificaciones, etc.) desarrollada en el marco de la presente Convocatoria Pública. El Interventor deberá certificar el cumplimiento de la exigencia antes indicada. Lo anterior no implica que los espacios ocupados por las bahías construidas en la presente convocatoria se deban reponer en otro lugar, con excepción de aquellos casos en que el propietario de la

 2.2

los DSI.

El Inversionista deberá garantizar la compatibilidad de las nuevas bahías de Línea y de transformación, en funcionalidad y en aspectos de potencia, comunicaciones, control y protecciones con la infraestructura existente.

El diagrama unifilar de la nueva Subestación Corrientes 230 kV se muestra en el Anexo 1.2.

Los equipos o elementos por instalar deberán ser completamente nuevos y de última tecnología.

El Inversionista deberá implementar redundancia en los canales de comunicación utilizando diferentes medios o tecnologías para el envío y la recepción de señales entre los extremos de las Líneas de transmisión. El Inversionista seleccionado deberá verificar que, con los equipos

Página 9 de 59

a instalar en las subestaciones, se eviten puntos comunes de fallas. Lo anterior con el fin de incrementar la fiabilidad de los esquemas de teleprotección de las Líneas de transmisión, ante mantenimientos o contingencias sobre uno de los sistemas de comunicación.

2.3 Puntos de conexión del Proyecto

 El Inversionista seleccionado, además de poseer el predio y/o los espacios para la presente Convocatoria Pública, independiente de la modalidad (compra o arrendamiento, etc.), deberá tener en cuenta lo definido en el Código de Conexión (Resolución CREG 025 de 1995 y sus modificaciones) y las siguientes consideraciones en cada uno de los puntos de conexión, para los cuales se debe establecer un contrato de conexión con el responsable y/o propietario de los activos relacionados.

Cuando el Transmisor considere la necesidad de hacer modificaciones a la infraestructura existente (independientemente del nivel tensión), deberá informar al Interventor y acordar estas modificaciones en el contrato de conexión con el responsable y/o propietario de los activos relacionados. Estas modificaciones estarán a cargo del Transmisor.

2.3.1 En la subestación Corrientes 230 kV.

El propietario de la Subestación Corrientes 230 kV será el Transmisor resultante de la presente Convocatoria Pública.

Con el STR:

Se prevé la conexión de dos (2) bancos de transformadores 230/115 kV de 180 MVA (3x60 MVA) cada uno, estos dos (2) bancos contarán con una unidad monofásica de reserva de 60 MVA en la Subestación Corrientes 230 kV. La frontera entre el Transmisor y el STR en la Subestación Corrientes 230 kV será en los bornes de alta de los transformadores.

El contrato de conexión entre el Transmisor resultante de la presente Convocatoria Pública UPME 10-2021 y el operador de red Empresa Públicas de Medellín S.A. E.S.P., deberá incluir, entre otros aspectos y según corresponda, lo relacionado con las condiciones para acceder al uso del terreno para la ubicación de la infraestructura a instalar, el espacio para la ubicación de los tableros de control y protecciones de los módulos, el enlace al sistema de control del CND, suministro de servicios auxiliares de AC y DC; y demás acuerdos necesarios para la conexión de los transformadores del STR. Este contrato de conexión deberá estar firmado por las partes, dentro de los cuatro (4) meses siguientes a la expedición de la Resolución CREG que oficializa los Ingresos Anuales Esperados del Transmisor adjudicatario de la presente Convocatoria Pública, al menos en sus condiciones básicas (objeto del contrato, terreno en el cual se realizarán las obras, espacios, ubicación y condiciones para acceder, entrega de datos sobre equipos y demás información requerida para diseños, obligaciones de las partes para la construcción, punto de conexión, duración del contrato, etc.), lo cual deberá ser puesto en conocimiento del Interventor. En el contrato de conexión deberá quedar plasmado entre otros:

- Una vez el Inversionista de la presente convocatoria tenga definido el lote en el cual se ubicará la Subestación Corrientes 230/115 kV deberá entregarle al Operador de Red Centrales Eléctricas del Norte de Santander el espacio destinado para las obras del STR, según lo definido en el numeral 5.1.2. Espacios de Reserva del presente Anexo, con el fin que este inicie oportunamente los trámites de licenciamiento ambiental del terreno y las obras del STR.
- Una vez dicho Operador de red obtenga la licencia ambiental, el Inversionista de la presente Convocatoria Pública deberá adecuar los correspondientes espacios del STR, sin embargo, podrán llegar a acuerdos para estos fines. El costo del terreno y sus adecuaciones estarán a cargo del Transmisor Nacional.

No obstante, en caso de requerirse, las partes podrán solicitar a la UPME, con la debida justificación, la modificación de la fecha de firma del contrato de conexión. Esta solicitud deberá ser remitida por los representantes legales de los agentes involucrados.

2.3.2 En la línea San Carlos – Esmeralda 230 kV.

El Transmisor propietario de la línea San Carlos – Esmeralda 230 kV es ISA Intercolombia S.A. E.S.P.

El punto de conexión del Proyecto de la presente Convocatoria Pública en la línea San Carlos – Esmeralda 230 kV, será en los puntos de seccionamiento de la línea. Para realizar la reconfiguración de la línea San Carlos – Corrientes - Esmeralda 230 kV.

El Inversionista deberá garantizar la compatibilidad con los sistemas de comunicaciones, control y protecciones de las bahías de línea de la subestación Corrientes 230 kV, con los sistemas de las bahías de los extremos de las líneas, específicamente en las Subestaciones San Carlos 230 kV y Esmeralda 230 kV.

Los contratos de conexión, que suscriba el Inversionista resultante de la presente Convocatoria Pública UPME 10-2021 e ISA-INTERCOLOMBIA S.A. E.S.P., deberán incluir, entre otros aspectos y según corresponda, todos los aspectos que tengan que ver con la conexión a la línea y con cambios o ajustes de cualquier índole que deban hacerse en las Subestaciones San Carlos 230 kV y Esmeralda 230 kV, que se generen producto de la reconfiguración de las líneas existentes en San Carlos-Corrientes-Esmeralda 230 kV. Este contrato de conexión deberá estar firmado por las partes, antes del inicio de la construcción y montaje de las obras, al menos en sus condiciones básicas, lo cual deberá ser puesto en conocimiento del Interventor. No obstante, las partes, en caso de requerirse, podrán solicitar a la UPME, con la debida justificación, la modificación del momento en que se firma el contrato de conexión.

3 ESPECIFICACIONES TÉCNICAS GENERALES

 El Interventor informará de manera independiente a la UPME, el cumplimiento de las especificaciones técnicas consignadas en el presente Anexo No. 1. El uso de normas y procedimientos aquí descritos podrá ser modificado en cualquier momento, hasta la fecha de realización de los diseños o de realización de la obra según el caso, sin detrimento del

Página 11 de 59

cumplimiento de la regulación y las normas técnicas de obligatorio cumplimiento, asegurando en cualquier caso que los requisitos y calidades técnicas se mantengan, para lo cual deberá previamente comunicarlo y soportarlo al Interventor.

3 4 5

1

2

Las Especificaciones contenidas en este Anexo No. 1, se complementan con la información de las subestaciones existentes que se incluyen en los documentos de esta Convocatoria Pública.

6 7 8

3.1 Parámetros del sistema

9

Todos los equipos e instalaciones a ser suministrados por el Transmisor deberán ser nuevos y de última tecnología, cumplir con las siguientes características técnicas del STN, las cuales serán verificadas por la Interventoría para la UPME.

12 13 14

11

Generales:

15	Tensión nominal	230 kV
16	Frecuencia asignada	60 Hz
17	Puesta a tierra	Sólida
18	Número de fases	3

19 20

22

Subestaciones 230 kV:

21 Servicios auxiliares AC 120/208V, tres fases, cuatro hilos.

Servicios Auxiliares DC 125V

23 Tipo de la Subestación Convencional o GIS o un híbrido.

Nivel de aislamiento al impulso tipo rayo
 Nivel de aislamiento a frecuencia industrial
 460 kV

26 Configuración de la Subestación Interruptor y medio.

27 28

29

30

31

32

33

34

35

Línea de transmisión 230 kV:

Tipo de Línea y estructuras: Aérea con torres autosoportadas y/o postes y/o

estructuras compactas y/o subterráneas.

Estructuras de soporte: Para doble circuito.

Circuitos por torre o canalización: Según diseño. Para Líneas aéreas, se podrán

compartir estructuras de soporte con infraestructura

existente.

Conductores de fase: Ver numeral 4.4.2 del presente Anexo No. 1. Cables de guarda: Ver numeral 4.4.3 del presente Anexo No. 1.

36 37 38

La longitud de las Líneas de transmisión de 230 kV, serán función del diseño y estudios pertinentes que realice el Inversionista.

39 40 41

42

Las Líneas de transmisión podrán ser totalmente aéreas o parcialmente aéreas, subterráneas o subfluviales. Las longitudes reales de las Líneas de transmisión de 230 kV serán en función del diseño y estudios pertinentes que realice el Inversionista.

43 44

Página 12 de 59

En caso de tramos subterráneos (si se requieren), el Inversionista deberá considerar todas las obras civiles requeridas (ductos y demás elementos), además de hacerse cargo del respectivo mantenimiento de esta obra civil.

3.2 Nivel de Corto Circuito

 El Transmisor deberá realizar los estudios pertinentes, de tal manera que se garantice que el nivel de corto circuito utilizado en los diseños y selección de los equipos y demás elementos de Líneas y subestaciones será el adecuado durante la vida útil de estos, no obstante, la capacidad de corto circuito asignada a los equipos y elementos asociados que se instalarán objeto de la presente Convocatoria no deberá ser inferior a 40 kA para 230 kV. La duración asignada al corto circuito no podrá ser inferior a los tiempos máximos provistos para interrupción de las fallas y los indicados en las normas aplicables. Copia del estudio deberá ser entregada al Interventor para su conocimiento y análisis.

3.3 Materiales

Todos los equipos y materiales incorporados al Proyecto deben ser nuevos y de la mejor calidad, de última tecnología y fabricados bajo normas internacionales y sello de fabricación, libres de defectos e imperfecciones. La fabricación de equipos y estructuras deberán ser tales que se eviten la acumulación de agua. Todos los materiales usados para el Proyecto, establecidos en el libro 2 tabla 2.1.2.1.a del RETIE deberán contar con certificado de producto según el numeral c del Título 2. Del RETIE. El Transmisor deberá presentar para fines pertinentes al Interventor los documentos que le permitan verificar las anteriores consideraciones. En el caso de producirse una nueva actualización del RETIE antes del inicio de los diseños y de la construcción de la obra, dicha actualización primará sobre el Reglamento actualmente vigente.

3.4 Efecto Corona, Radio-interferencia y Ruido Audible

Todos los equipos y los conectores deberán ser de diseño y construcción tales que, en lo relacionado con el efecto corona y radio interferencia, deben cumplir con lo establecido en el RETIE, Código de Redes y Normativa vigente. El Transmisor deberá presentar al Interventor para los fines pertinentes a la Interventoría las Memorias de Cálculo y/o reportes de pruebas en donde se avalen las anteriores consideraciones.

Para niveles máximos de radio-interferencia, se acepta una relación señal-ruido mínima de: a) Zona Rurales: 22 dB a 80m del eje de la Línea a 1000 kHz en condiciones de buen tiempo y b) Zonas Urbanas: 22 dB a 40m del eje de la Línea a 1000 kHz en condiciones de buen tiempo.

En cuanto a ruido audible generado por la Línea y/o la Subestación, deberá limitarse a los estándares máximos permisibles de niveles de emisión de ruido establecidos en Resolución 0627 de 2006 del Ministerio de Ambiente, Vivienda y Desarrollo Territorial, hoy Ministerio de Ambiente y Desarrollo Sostenible o aquella que la modifique o sustituya.

3.5 Licencias, Permisos, Compromisos y Contrato de Conexión

La consecución de todas las licencias y permisos, así como las modificaciones a que haya lugar, son responsabilidad del Inversionista. Se debe considerar lo establecido en el capítulo X de la Ley 143 de 1994, en especial los artículos 52 y 53.

Los acuerdos operacionales de coexistencias y contratos de conexión deben considerar lo establecido en la Resolución 40303 de 2022 del MME.

La celebración de los Contratos de Conexión deberá dar prioridad a todos los acuerdos técnicos, administrativos, comerciales y operativos de tal forma que no existan imprecisiones en este aspecto antes de la fabricación de los equipos y materiales del Proyecto. La fecha para haber llegado a estos acuerdos técnicos se deberá reflejar como Hito en el Cronograma de la Convocatoria, lo cual será objeto de verificación por parte del Interventor.

Los acuerdos administrativos y comerciales de los Contratos de Conexión se podrán manejar independientemente de los acuerdos técnicos. El conjunto de los acuerdos técnicos y administrativos constituye el Contrato de Conexión cuyo cumplimiento de la regulación vigente deberá ser certificado por el Inversionista seleccionado. Copia de estos acuerdos deberán entregarse al Interventor.

Así mimo, en el evento que se presenten casos de superposición de proyectos se debe atender al compromiso suscrito en el marco de lo dispuesto en el numeral 6.1. literal n) de las Condiciones Generales de los DSI.

3.6 Pruebas en Fábrica

 Una vez el Inversionista haya seleccionado los equipos a utilizar deberá entregar al Interventor, copia de los reportes de las pruebas que satisfagan las normas aceptadas en el Código de Conexión, para interruptores, seccionadores, transformadores de corriente y potencial, entre otros. En caso de que los reportes de las pruebas no satisfagan las normas aceptadas, el Interventor podrá solicitar la repetición de las pruebas a costo del Inversionista.

Durante la etapa de fabricación de todos los equipos y materiales de Líneas y Subestación, estos deberán ser sometidos a todas las pruebas de rutina y aceptación que satisfagan lo estipulado en la norma para cada equipo en particular. Los reportes de prueba de aceptación deberán ser avalados por Personal idóneo en el laboratorio de la fábrica.

El Inversionista deberá dar cumplimiento a lo estipulado en la Resolución CREG 098 de 2000, numeral 3.3 "MATERIALES", según el cual "el Transportador presentará a la Entidad designada, todos los Formularios de Características Técnicas garantizadas de los materiales utilizados y los correspondientes reportes de pruebas de materiales y equipos, según las exigencias de las normas técnicas correspondientes".

Página **14** de **59**

4 ESPECIFICACIONES PARA LAS LÍNEAS DE TRANSMISIÓN DE 230 kV

4.1 General

En la siguiente tabla se presentan las especificaciones técnicas mínimas para las nuevas Líneas de transmisión que el Inversionista construya, lo cual deberá revisar y ajustar una vez haya hecho el análisis comparativo de las normas:

Línea	Línea de 230 kV				
Ítem Descripción Observació		Observación	Unidad	Magnitud	
1	Tensión nominal trifásica	Numeral 3.1	kV	230	
2	Frecuencia nominal	Numeral 3.1	Hz	60	
3	Tipo de Línea	Numeral 3.1	-	Aérea/ Subterránea	
4	Longitud aproximada	Numeral 4.3	km	14 km Longitud que corresponde desde la subestación Corrientes 230kV a interceptar las líneas existentes San Carlos - Esmeralda 230.	
5	Altura (estimada) sobre el nivel del mar	Numeral 4.3	msnm	Aproximadamente entre 860 msnm a 2270 msnm, dependiendo de la ruta seleccionada por el transmisor.	
6	Número de circuitos por torre o canalización	Numeral 3.1	-	Para líneas aéreas dos (2) circuitos, para líneas subterráneas según diseño	
7	Conductores de fase	Numeral 4.4.2	-	-	
8 Subconductores por fase		Numeral 4.4.2	-	-	
9	Cables de guarda	Numeral 4.4.3	-	-	
10	Cantidad de cables de guarda	Numeral 4.4.3	-	-	
11	Distancias de seguridad	Código de Redes o RETIE según aplique	-	-	
12	Ancho de servidumbre	Código de Redes o RETIE según aplique	-	-	
13	Máximo campo eléctrico e interferencia	Código de Redes o RETIE según aplique	-	-	
14	Contaminación	Debe verificar la presencia en el aire de partículas que puedan	g/cm ²		

Página 15 de 59

Línea	de 230 kV			
Ítem	Descripción	Observación	Unidad	Magnitud
		tener importancia en el		-
		diseño del aislamiento.		
		Investigar presencia de		
		contaminación salina,		
		industrial o de otro tipo.		
15	Condiciones de tendido de los cables	Código de Redes o RETIE según aplique	-	-
16	Estructuras	Numeral 4.4.6	-	-
17	Árboles de carga y	Código de Redes o		
17	curvas de utilización	RETIE según aplique	•	-
10	18 Herrajes	Código de Redes o	-	_
10		RETIE según aplique		_
19	Cadena de aisladores	Código de Redes o	-	_
13	Oddena de alsiadores	RETIE según aplique		
20	Diseño de aislamiento	Código de Redes o	0 -	-
20	Discrib de alsiamiento	RETIE según aplique		
21	Valor resistencia de	Código de Redes o	_	_
	puesta a tierra	RETIE según aplique		
22	Sistema de puesta a	Código de Redes o	_	_
	tierra	RETIE según aplique		
23	Salidas por descargas	Código de Redes o	_	_
	atmosféricas	RETIE según aplique		
24	Cimentaciones	Código de Redes o	_	_
		RETIE según aplique		

En cualquier caso, se deberá dar cumplimiento al Código de Redes (Resolución CREG 025 de 1995 con sus Anexos, incluyendo todas sus modificaciones) y al RETIE en su versión vigente.

Se debe propender por la minimización u optimización de cruces entre Líneas de transmisión objeto de la presente Convocatoria con otras Líneas en ejecución o existentes y evitar la afectaciones o riesgos al SIN, por lo cual el Transmisor deberá implementar las medidas técnicas necesarias. Para ello, el Transmisor se obliga a realizar el estudio correspondiente antes del inicio de construcción de las obras y, a más tardar en ese momento, ponerlo a consideración de la Interventoría, la UPME, terceros involucrados, el CND y si es del caso al CNO. Este documento hará parte de las memorias del proyecto.

Las Líneas de transmisión podrán ser totalmente aéreas o parcialmente aéreas y subterráneas. La longitud de las Líneas de transmisión, serán en función del diseño y estudios pertinentes que realice el Inversionista.

Se aclara que la definición del número de cables de guarda necesarios para la estructura doble circuito a construir es definido por el Inversionista de la presente Convocatoria. Será el Inversionista quien defina el número de cables de guarda que instalará, pues en cualquier caso

Página 16 de 59

F-DE-013 V.3 15/07/2024

No Controlada". La versión vigente se encuentra publicada en el Sistema de Gestión Único Estratégico de

8

9

10 11

12 13

14

15 16 17

18 19

Mejoramiento - SIGUEME.

1 2

3

deberá garantizar la protección los circuitos a instalar en la presente Convocatoria y el cumplimiento de las normas técnicas aplicables.

La selección de la ruta de las Líneas de transmisión objeto de la presente Convocatoria Pública

4.2 Ruta de las líneas de transmisión

 UPME, será responsabilidad del Inversionista seleccionado. Por lo tanto, a efectos de definir dicha ruta, será el Inversionista el responsable de realizar investigaciones detalladas y consultas a las Autoridades ambientales, a las Autoridades nacionales, regionales y locales los diferentes Planes de Ordenamiento Territorial, a las Autoridades que determinan las restricciones para la aeronavegación en el área de influencia del Proyecto y, en general, con todo tipo de consideraciones, restricciones y reglamentaciones existentes. En consecuencia, deberá tramitar los permisos y licencias a que hubiere lugar. Se deberá tener en cuenta que pueden existir exigencias y/o restricciones de orden nacional, regional o local.

La Unidad de Planeación Minero Energética – UPME, no tendrá ningún tipo de responsabilidad en la planeación, definición, elaboración de estudios, solicitud de licencias o autorizaciones y sus modificaciones. Será responsabilidad exclusiva del Inversionista cualquier retraso, demora, dificultad o imposibilidad de llevar a cabo el proyecto de la manera planeada por la falta de alguna autorización o licencia.

Específicamente para los tramos subterráneos, si se requiriere, durante la selección de la ruta, deberán identificarse todas las instalaciones subterráneas existentes, así como raíces de árboles, discontinuidades estratigráficas etc., que puedan incidir en ubicación de los cables o ductos requeridos. Para la determinación de los elementos enterrados se podrá ejecutar, sin limitarse a ello, un rastreo electromagnético del subsuelo mediante equipo especial para este propósito tal como el Georradar o Radar de Penetración Terrestre (Ground Pentration Radar – GPR). En estos tramos deberá tenerse en cuenta la posibilidad de ubicación de las cajas para empalme o cambio de dirección. También será responsabilidad del Inversionista consultar a las Autoridades y/o entidades correspondientes, encargadas de otra infraestructura que pueda estar relacionada.

El Inversionista deberá considerar todas las restricciones, precauciones y demás aspectos relevantes que se identifiquen en los análisis tendientes a identificar alertas tempranas en la zona del proyecto.

A modo informativo, el Inversionista podrá consultar los documentos denominados "ANÁLISIS ÁREA DE ESTUDIO PRELIMINAR Y ALERTAS TEMPRANAS – PROYECTO CORRIENTES 230 KV" y "DIAGNÓSTICO DE CONDICIONES SOCIOAMBIENTALES NUEVA SUBESTACIÓN SAN LORENZO 230 KV Y LÍNEAS DE TRANSMISIÓN ASOCIADAS" que suministran información de referencia. El objeto de estos documento es identificar de manera preliminar las posibilidades y condicionantes físicos, ambientales y sociales, constituyéndose en documentos ilustrativos para los diferentes Interesados, sin pretender determinar o definir rutas, por lo tanto es exclusivamente de carácter ilustrativo y no puede o no debe considerarse como una asesoría en materia de inversiones, legal, fiscal o de cualquier otra naturaleza por parte de la UPME o sus funcionarios, empleados, asesores, agentes y/o representantes. Es

Página 17 de 59

responsabilidad del Inversionista el asumir en su integridad los riesgos inherentes a la ejecución del Proyecto, para ello deberá validar la información, realizar sus propios estudios y consultas ante las Autoridades competentes, entre otras.

La fuente de la información de este documento es secundaria, por lo cual es responsabilidad del Inversionista el asumir en su integridad los riesgos inherentes a la ejecución del Proyecto, para ello deberá validar la información, realizar sus propios estudios y consultas ante las Autoridades competentes, entre otras.

En general, los Proponentes basarán sus Propuestas en sus propios estudios, investigaciones, exámenes, inspecciones, visitas, entrevistas y otros.

4.3 Longitud de las líneas

 La longitud de la línea corresponderá al trazado de la línea desde la futura Subestación Corrientes hasta interceptar la Línea San Carlos – Esmeralda 230 kV. Por tanto, los cálculos y valoraciones que realice el Inversionista para efectos de su propuesta económica deberán estar fundamentados en sus propias evaluaciones, análisis y consideraciones.

A manera de información, la altura promedio sobre el nivel del mar de la línea reconfigurada San Carlos-Corrientes-Esmeralda 230 kV (asociada a estimativos preliminares) puede variar entre 860 msnm a 2270 msnm, dependiendo de la ruta seleccionada por el transmisor. Sin embargo, tanto la longitud real como la altura sobre el nivel del mar real serán función del trazado, diseño y estudios pertinentes que debe realizar el Inversionista seleccionado.

4.4 Especificaciones de diseño y construcción líneas de 230 kV

Las especificaciones de diseño y construcción que se deben cumplir para la ejecución del Proyecto son las establecidas en el presente Anexo No. 1, los DSI, en el Reglamento de Operación del SIN, en el Código de Redes (Resolución CREG 025 de 1995 y actualizaciones) y en el RETIE, y actualizaciones posteriores previas al diseño y construcción de la Línea.

Para el caso de la reconfiguración de Líneas, las especificaciones de diseño deben ser las mismas al diseño de la existente Línea de Transmisión, excepto en los casos en los que la normatividad de determinados aspectos del diseño hubiere cambiado y sea ahora más severa o restrictiva. El Inversionista correspondiente tendrá que recopilar al detalle todas las características del diseño original de la Línea de Transmisión y confrontarlas con la normatividad actual.

El Interventor verificará para la UPME, que los diseños realizados por el Transmisor cumplan con las normas técnicas aplicables y con las siguientes especificaciones.

4.4.1 Aislamiento

El Inversionista deberá verificar, en primer lugar, las condiciones meteorológicas y de contaminación de la zona en la que se construirán las Líneas, la nueva Subestación y/o las

Página **18** de **59**

obras en las subestaciones existentes y, con base en ello, hacer el diseño del aislamiento de las Líneas, los equipos de las subestaciones, y la coordinación de aislamiento, teniendo en cuenta las máximas sobretensiones que puedan presentarse en las Líneas por las descargas atmosféricas, por maniobras propias de la operación, en particular el cierre y apertura de las Líneas en vacío, despeje de fallas con extremos desconectados del sistema, considerando que en estado estacionario las tensiones en las barras no deben ser inferiores al 90% ni superiores al 110 % del valor nominal y que los elementos del sistema deben soportar las tensiones de recuperación y sus tasas de crecimiento.

De acuerdo con la Resolución CREG 098 de 2000 se considera como parámetro de diseño un límite máximo de tres (3) salidas por cada 100 km de Línea / año ante descargas eléctricas atmosféricas, una (1) falla por cada 100 operaciones de maniobra de la Línea y servicio continuo permanente ante sobretensiones a frecuencia industrial.

Para el caso de tramos de Líneas aéreas-subterráneas en todos los sitios de transición deberán preverse los descargadores de sobretensión que protejan el cable ante la ocurrencia de sobretensiones por descargas atmosféricas, fallas, desconexiones o maniobras. El aislamiento de los cables deberá garantizar la operación de continua de la Línea ante sobretensiones de frecuencia de 60 Hz.

4.4.2 Conductores de fase

Las siguientes condiciones y/o límites estarán determinadas por las características propias de la ruta y el lugar donde el Proyecto operará, por lo tanto, será responsabilidad del Inversionista su verificación. El Interventor verificará e informará a la UPME si el diseño realizado por el Inversionista cumple con las normas técnicas aplicables y con los valores límites establecidos.

Las características de los conductores de fase deberán cumplir con las siguientes exigencias técnicas:

- Capacidad normal de operación del circuito no inferior a 1260 Amperios a temperatura ambiente máxima promedio.
- Máxima resistencia DC a 20°C por conductor de fase igual o inferior a 0,0630 ohmios/km.

En caso de conductores en haz o múltiples por fase, la resistencia DC a 20°C por conductor de fase corresponderá a la resistencia en paralelo de los subconductores de cada fase y la capacidad de corriente corresponderá a la capacidad en paralelo de los subconductores de cada fase. Lo anterior utilizando las normas o cálculos aplicables y según las características de la Línea (p. eje, aérea o subterránea).

El conductor de fase y el número de conductores por fase deberá tener como mínimo las características del conductor existente en la línea a intervenir San Carlos - Esmeralda 230 kV.

El Inversionista deberá garantizar los valores de capacidad de corriente y resistencia, tanto en los tramos aéreos como en los subterráneos o subfluviales, según sea el caso.

Página **19** de **59**

En cualquier condición, la tensión longitudinal máxima en el conductor no deberá exceder el 50 % de su correspondiente tensión de rotura.

El conductor seleccionado deberá cumplir con las exigencias de radio interferencia establecidas en la Normativa Aplicable. El Inversionista deberá verificar el cumplimiento de estas exigencias.

Los valores máximos permitidos para Intensidad de Campo Eléctrico y Densidad de Flujo Magnético son los indicados en el RETIE, donde el público o una Persona en particular pueden estar expuestos durante varias horas.

De presentarse características en el ambiente para las nuevas Líneas, que tuvieren efecto corrosivo, los conductores aéreos deberán ser de tipo AAC, ACAR o AAAC, con alambres de aleación ASTM 6201-T81 y cumplir con los valores de capacidad de transporte mínima, resistencia óhmica máxima y ruido audible especificados o establecidas en la Normativa Aplicable. Para Líneas subterráneas el conductor podrá ser en cobre o aluminio con aislamiento XLPE y con capacidad adecuada para resistir las corrientes de corto circuito previsibles para las Líneas durante el tiempo de operación de los interruptores. En caso de que el Inversionista requiera cables de fibra óptica, estas podrán ser incorporadas al cable o incluidas en la canalización. El Inversionista deberá informar a la Interventoría su decisión sobre el tipo de conductor, sustentándola técnicamente.

Alternativamente, si el Inversionista lo estima conveniente, se considera aceptable el uso de conductores aéreos no convencionales tales como los que pueden operar a temperaturas superiores a los conductores convencionales, de flecha reducida, con alta resistencia a la corrosión en los ambientes marinos y similares. Se pueden considerar conductores para Líneas aéreas como conductores conformados por materiales especiales (reemplazo del aluminio por aleaciones termo-resistentes, cambio del acero del núcleo por otros materiales que permitan flechas menores), combinación de materiales (combinación de alambre de aluminio con fibras de carbono o materiales especiales) o cambio de formas (de los alambres y/o del cable completo). Para que estos tipos de cables sean aceptables deberán cumplir, no solo con los requisitos técnicos indicados en este numeral para los conductores convencionales, sino también con las siguientes condiciones adicionales:

• El conductor de fases deberá cumplir con regulaciones internacionalmente aceptadas, tales como normas ASTM, IEC o entidades de similar categoría.

 Los accesorios para conductor de fases (grapas de suspensión y retención, empalmes, camisas de reparación y varillas de blindaje) deberán ser técnicamente apropiados para este tipo de conductores.

4.4.3 Cable(s) de guarda

 El cumplimiento de las siguientes condiciones será responsabilidad del Inversionista y aplican solo para cables de guarda de los circuitos que se instalarán en el desarrollo de la presente Convocatoria Pública.

Página 20 de 59

Se requiere que todos los tramos de Línea tengan uno o dos cables de guarda (convencionales u OPGW). En Líneas nuevas, al menos uno de los cables de guarda deberá ser OPGW. En nuevos tramos que reconfiguren Líneas existentes, los cables de guarda a instalar deberán tener características técnicas iguales o superiores al del cable o los cables de guarda de la Línea existente.

De presentarse características en el ambiente con efecto corrosivo, los cables de guarda no deberán contener hilos en acero galvanizado y deberán ser del tipo Alumoclad o de otro material resistente a la corrosión, que cumpla con las especificaciones técnicas y los propósitos de un cable de guarda convencional u OPGW desde el punto de vista de su comportamiento frente a descargas atmosféricas. El o los cables de guarda a instalar deberán soportar el impacto directo de las descargas eléctricas atmosféricas que puedan incidir sobre la Línea, garantizando el criterio de comportamiento indicado en el diseño del aislamiento. El incremento de temperatura del cable o cables de guarda a ser instalados deberán soportar las corrientes de corto circuito monofásico de la Línea que circulen por ellos.

En cualquier condición, la tensión longitudinal máxima en el conductor o cable de guarda no deberá exceder el 50 % de su correspondiente tensión de rotura.

El Interventor verificará para la UPME, que el diseño realizado por el Transmisor cumpla con las normas técnicas aplicables.

En el evento de que el Inversionista decida usar alguna o todas las Líneas objeto de la presente Convocatoria Pública UPME, para la transmisión de comunicaciones por fibra óptica, será de su responsabilidad seleccionar los parámetros y características técnicas del cable de guarda o de los cables de fibra óptica asociados con cables enterrados o subfluviales e informar de ellos al Interventor.

4.4.4 Puesta a tierra de las líneas

El sistema de puesta a tierra se diseñará de acuerdo con las condiciones específicas del sitio de cada una de las estructuras, buscando ante todo preservar la seguridad de las personas considerando además el comportamiento del aislamiento ante descargas atmosféricas. La selección del tipo de cimentación (zapata de concreto o parrilla metálica) corresponde al Inversionista. Para ello deberá determinar los parámetros de pH y contenido de sulfatos en cada sitio de torre y, con base en estos resultados, definir el tipo de cimentación, sin detrimento de aplicar nuevas alternativas tecnológicas que en cualquier caso deberán permitir la operación de las líneas reconfiguradas acorde a la normatividad aplicable.

Con base en la resistividad del terreno y la componente de la corriente de corto circuito que fluye a tierra a través de las estructuras, se deben calcular los valores de puesta a tierra tal que se garanticen las tensiones de paso de acuerdo con la recomendación IEEE 80 y con lo establecido en el RETIE en su última revisión. La medición de las tensiones de paso y contacto para efectos de la comprobación antes de la puesta en servicio de la Línea, deberán hacerse de acuerdo con lo indicado en el título 12 del Libro 3 del RETIE y específicamente con lo

Página **21** de **59**

establecido en el numeral 3.12.4.3., o el numeral aplicable si la norma ha sido objeto de actualización.

El Transmisor debe determinar en su diseño, los materiales que utilizará en la ejecución de las puestas a tierra de las estructuras de la Línea teniendo en cuenta la vida útil, la frecuencia de las inspecciones y mantenimientos, la posibilidad del robo de los elementos de cobre, así como la corrosividad de los suelos del sitio de cada torre. No obstante, en cualquier caso, deberá cumplirse con lo estipulado en el RETIE, en particular con el artículo 3.12.2 "COMPONENTES DE LOS SISTEMAS DE PUESTA A TIERRA" o el numeral aplicable si la norma ha sido objeto de actualización.

Los conectores a utilizar deberán contar con certificado de producto donde debe ser claro si son adecuados para enterramiento directo.

Para los cables asilados subterráneos se deberá instalar un sistema de puesta a tierra de las pantallas metálicas que garanticen el adecuado funcionamiento de los cables y los voltajes de paso en la superficie de los terrenos aledaños.

4.4.5 Transposiciones de línea

El Inversionista deberá analizar la necesidad de implementar transposiciones de Línea para mantener los niveles de desbalance exigidos por la Normativa Aplicable para ello, considerando incluso la posibilidad de implementar ajustes o modificaciones sobre la infraestructura actual o reubicaciones necesarias para el cumplimiento de tal propósito.

El Transmisor deberá calcular los desbalances en las fases con la suficiente anticipación al inicio de las obras y asegurar que cumplan con la norma técnica aplicable para ello, *IEC 1000-3-6 o equivalente*, lo cual deberá soportar y poner a consideración del Interventor. Así mismo, el Transmisor deberá hacerse cargo de todos los costos asociados. En general, la implementación física de la solución hace parte del presente Proyecto.

Las transposiciones se podrán localizar a un sexto (1/6), a tres sextos (3/6) y a cinco sextos (5/6) de la longitud total de la Línea correspondiente.

 El Transmisor se obliga a realizar el estudio correspondiente antes del inicio de construcción de las obras y, a más tardar en ese momento, ponerlo a consideración de la Interventoría, terceros involucrados, el CND y si es del caso al CNO. Este documento hará parte de las memorias del proyecto.

4.4.6 Estructuras

Para el caso de las líneas a reconfigurar sería deseable, pero no mandatorio, que los tipos de estructuras de estas líneas que se seleccionen para el soporte de éstas tengan el mismo diseño de las estructuras de soporte que tienen las correspondientes líneas a intervenir.

Página 22 de 59

El dimensionamiento eléctrico de las estructuras se debe realizar considerando la combinación de las distancias mínimas que arrojen los estudios de sobretensiones debidas a descargas atmosféricas, a las sobretensiones de maniobra y a las sobretensiones de frecuencia industrial.

Las estructuras de apoyo para las Líneas aéreas y las de transición aéreo-subterráneo (si esta última opción se presenta) deberán ser autosoportadas. En cualquier caso, las estructuras no deberán requerir para su montaje el uso de grúas autopropulsadas ni de helicópteros. El Inversionista podrá hacer uso de estos recursos para su montaje, pero, se requiere que estas estructuras puedan ser montadas sin el concurso de este tipo de recursos.

El cálculo de las curvas de utilización de cada tipo de estructura, la definición de las hipótesis de carga a considerar y la evaluación de los árboles de cargas definitivos, para cada una de las hipótesis de carga definidas, deberá hacerse considerando la metodología establecida por el ASCE en la última revisión del documento "Guidelines for Electrical Transmission Line Structural Loading - Practice 74". La definición del vano peso máximo y del vano peso mínimo de cada tipo de estructura será establecida a partir de los resultados del plantillado de la Línea. El diseño estructural deberá adelantarse atendiendo lo establecido por el ASCE en la última revisión de la norma ASCE STANDARD 10 "Design of Latticed Steel Transmision Structures". En cualquier evento, ningún resultado de valor de cargas evaluadas con esta metodología de diseño podrá dar resultados por debajo que los que se obtienen según la metodología que establece la última revisión del RETIE. Si ello resultara así, primarán estas últimas.

El grado de galvanización del acero de las estructuras deberá ser concordante con el nivel de contaminación salina y con el efecto de la abrasión resultante de bancos de arena con el viento presente en las zonas o áreas donde este efecto se presenta.

4.4.7 Localización de estructuras

Para la localización de estructuras, deberán respetarse las distancias mínimas de seguridad entre el conductor inferior de la Línea y el terreno en zonas accesibles a peatones y las distancias de seguridad mínimas a obstáculos tales como vías, oleoductos, Líneas de transmisión o de comunicaciones, ríos navegables, bosques, etc., medidas en metros. La temperatura del conductor a considerar para estos efectos será la correspondiente a las condiciones de máxima temperatura del conductor durante toda la vida útil del Proyecto, estas condiciones deben ser definidas por el Inversionista.

4.4.8 Sistema Antivibratorio, Amortiguadores y Espaciadores - Amortiguadores

El Interventor informará a la UPME los resultados del estudio del sistema de protección antivibratorio del conductor de fase y del cable de guarda. Los amortiguadores y espaciadores - amortiguadores (según el número de conductores por fase) deben ser adecuados para amortiguar efectivamente la vibración eólica en un rango de frecuencias de 10 Hz a 100 Hz, tal como lo establece el Código de Redes (Resolución CREG 025 de 1995 y sus modificaciones). El Inversionista determinará los sitios de colocación, a lo largo de cada vano, de los espaciadores - amortiguadores de tal manera que la amortiguación de las fases sea efectiva.

Página 23 de 59

Copia del estudio de amortiguamiento será entregada al Interventor para su conocimiento y análisis.

En los cables de guarda los amortiguadores serán del tipo "*stockbridge*" y su posicionamiento medido desde la boca de la grapa y entre amortiguadores o espaciadores – amortiguadores será el que determine el estudio de amortiguamiento que realice el Inversionista, copia del cual deberá ser entregada al Interventor.

4.4.9 Cimentaciones

La selección del tipo de cimentación corresponde al Inversionista. Para ello deberá determinar los parámetros de pH y contenido de sulfatos en cada sitio de torre y, con base en estos resultados, definir el tipo de cimentación e informar por escrito a la Interventoría su decisión.

Para los fines pertinentes, el Interventor revisará los resultados de las memorias de cálculo de las cimentaciones propuestas de acuerdo con lo establecido en la Resolución CREG 098 de 2000, numeral 2.7, o en sus actualizaciones posteriores previas al inicio de las obras.

Los diseños de cimentaciones para las torres de una Línea de transmisión deben hacerse considerando los resultados de los estudios de suelos que obligatoriamente debe adelantar el Inversionista en todos los sitios de torre, y las cargas a nivel de cimentación más críticas que se calculen a partir de las cargas mostradas en los árboles de cargas de diseño de cada tipo de estructura.

4.4.10 Canalizaciones, cajas e instalación de cables para tramos de Líneas subterráneas o subfluviales

De acuerdo con el artículo 3.19.10 del RETIE las canalizaciones para los tramos subterráneos podrán realizarse mediante puentes, túneles, bancos de ductos, o enterramiento directo, sin embargo, dadas las dificultades para realizar las excavaciones sin obstaculizar el uso normal de tales vías, el Inversionista podrá considerar la posibilidad de utilizar el sistema de perforación dirigida. En la escogencia e instalación del tipo de canalización, se deben evaluar las condiciones particulares de la instalación y su ambiente y aplicar los elementos más apropiados teniendo en cuenta los usos permitidos y las prohibiciones, así como contar con los permisos de los propietarios o de las Autoridades competentes según corresponda.

Los ductos se colocarán, con pendiente mínima del 0,1 % hacia las cámaras de inspección, y con una profundidad de enterramiento que cumpla con normas técnicas internacionales o de reconocimiento internacional para este tipo de Líneas.

Para cables de enterramiento directo, el fondo de la zanja será una superficie firme, lisa, libre de discontinuidades y sin obstáculos. El cable se dispondrá con una barrera de protección contra el deterioro mecánico. A una distancia entre 20 y 30 cm por encima del cable deben instalarse cintas de identificación o señalización no degradables en un tiempo menor a la vida útil del cable enterrado.

Todas las transiciones entre tipos de cables, las conexiones en los extremos o las derivaciones deben realizarse en cámaras o cajas de inspección cuya construcción y sus sistemas de drenaje garanticen que ellas pueden mantenerse sin presencia de agua en su interior. Las dimensiones internas útiles de las cajas o cámaras de paso, derivación, conexión o salida deben ser adecuadas para la ejecución de empalmes, realizar las curvas de los cables cumpliendo con el radio de curvatura mínimo recomendado por el fabricante del cable y permitir el tendido en función de la sección de los conductores. Los cables deben quedar debidamente identificados dentro de las cámaras de inspección.

Las tapas de las cajas podrán ser prefabricadas, siempre que sean de materiales resistentes a la corrosión, que resistan impacto y aplastamiento, dependiendo del ambiente y el uso del suelo donde se instalen, lo cual debe demostrarse mediante el cumplimiento de una norma técnica para ese tipo de producto, tal como la ANSI/STCE 77.

El inversionista deberá proveer lo necesario para la conexión subterránea a aérea, incluyendo todos los dispositivos de protección y de puesta a tierra.

4.4.11 Señalización aérea

El Inversionista deberá investigar con la Unidad Administrativa Especial de Aeronáutica Civil (Aerocivil), la Fuerza Aérea de Colombia, FAC, la Armada Nacional, u otros posibles actores, la existencia de aeródromos o zonas de tránsito de aeronaves de cualquier índole (particulares, militares, de fumigación aérea, etc.) que hagan imperioso que la Línea lleve algún tipo de señales que impidan eventuales accidentes originados por la carencia de ellos.

Se mencionan en su orden: la pintura de las estructuras según norma de Aerocivil; balizas de señalización aérea ubicadas en el cable de guarda en vanos específicos y/o faros centelleantes en torres en casos más severos.

La Unidad de Planeación Minero Energética UPME no tendrá ningún tipo de responsabilidad en la ejecución de esta obligación, la cual es de responsabilidad exclusiva del Inversionista.

4.4.12 Desviadores de vuelo para aves

Es responsabilidad del Inversionista identificar la necesidad de instalar desviadores de vuelo para aves. La determinación de esta necesidad será responsabilidad del Inversionista por intermedio de los funcionarios a cuyo cargo están los estudios ambientales. Serán de su responsabilidad la determinación de la existencia de aves (migratorias o no) que puedan resultar afectadas por la existencia de las Líneas y, recomendar el uso de desviadores de vuelo de aves, determinando los tramos de colocación de estos dispositivos y las distancias a los que estos deben colocarse.

Cualquier afectación que se pueda provocar por la falta de previsión o de identificación de la necesidad de la instalación de los desviadores de vuelo para aves será responsabilidad exclusiva del Inversionista. La Unidad de Planeación Minero Energética UPME no tendrá ningún tipo de responsabilidad en la ejecución de esta obligación.

Página **25** de **59**

15/07/2024

1 2 3

4

4.4.13 Obras complementarias

5 6 7 El Interventor informará a la UPME acerca del cumplimiento de requisitos técnicos del diseño y construcción de todas las obras civiles que garanticen la estabilidad de los sitios de torre, protegiendo taludes, encauzando aguas, etc., tales como muros de contención, tablestacados o trinchos, cunetas, filtros, obras de mitigación, control de efectos ambientales y demás obras que se requieran.

8 9 10

4.5 Informe técnico

11 12

De acuerdo con lo establecido en el numeral 3 de la Resolución CREG 098 de 2000 o como se establezca en resoluciones posteriores a esta, el Interventor verificará que el Transmisor suministre los siguientes documentos técnicos durante las durante las respectivas etapas de construcción de las Líneas de transmisión del Proyecto:

15 16 17

18

19

20

21 22

23 24

13

14

- Informes de diseño de acuerdo con el numeral 3.1 de la Resolución CREG 098 de 2000.
- Planos definitivos de acuerdo con el numeral 3.2 de la Resolución CREG 098 de 2000.
- Materiales utilizados para la construcción de las Líneas del Proyecto de acuerdo con el numeral 3.3 de la Resolución CREG 098 de 2000.
- Servidumbres de acuerdo con el numeral 3.4 de la Resolución CREG 098 de 2000.
- Informe mensual de avance de obras de acuerdo con el numeral 3.5.1 de la Resolución CREG 098 de 2000.
- Informe final de obra de acuerdo con el numeral 3.5.2 de la Resolución CREG 098 de 2000.
- Análisis de riesgos de origen eléctrico de acuerdo con el artículo 15.1 del título 5 del RETIE. resolución 40117 del 02 de abril de 2024.

5 ESPECIFICACIONES PARA LA SUBESTACIÓN

29 30 31

Las siguientes son las especificaciones técnicas para la subestación a construir en el objeto de la presente Convocatoria Pública.

32 33 34

5.1 General

36 37 38

35

La información específica, remitida por los propietarios de la infraestructura existente, como Costos de Conexión, datos técnicos, planos, etc., serán suministrados por la UPME conforme el Numeral 9 del presente Anexo No. 1.

39 40 La siguiente tabla presenta las características de las subestaciones que hacen parte del proyecto objeto de la presente Convocatoria Pública:

41

ítem	Descripción	Corrientes 230 kV	
1 Subestación nueva Si		Si	
2	Configuración	Interruptor y medio	
3	Tipo de Subestación	Convencional o GIS o híbrida	

Página 26 de 59

F-DE-013 V.3

15/07/2024

ítem	Descripción	Corrientes 230 kV		
4	Agente Responsable de la Subestación	Inversionista Convocatoria Pública UPME 10-2021		

5.1.1 Predio de las subestación

Subestación Corrientes 230 kV

El predio de la subestación Corrientes 230 kV será el que adquiera el Inversionista Adjudicatario considerando y garantizando las facilidades para los accesos de las líneas de transmisión y el acceso de equipos, para el STN y STR. Sin embargo, su ubicación está limitada dentro de un radio no mayor a 3 km con respecto a las siguientes coordenadas (centroide), ubicadas en el municipio de Cocorná, departamento de Antioquia.

Coordenadas centro círculo polígono definido para la ubicación de la subestación Corrientes 230 kV:

Coordenada	s Geográficas	Magna Nacional	
Latitud	Longitud	Norte	Este
6° 1' 51,968" N	75° 8' 11,516" W	2224888,686	4763605,299

El predio seleccionado debe ser tal que no limite el crecimiento de la subestación mediante futuras ampliaciones a nivel de STN y STR y que facilite el acceso de futuras líneas del STR y STN.

El Inversionista deberá proveer el espacio físico necesario para la construcción de las obras objeto de la presente Convocatoria Pública y los espacios de reserva definidos en el numeral 5.1.2 de este Anexo No. 1.

El Inversionista es el responsable de realizar investigaciones detalladas y consultas a las Autoridades relacionadas con los asuntos ambientales, con los diferentes Planes de Ordenamiento Territorial que se puedan ver afectados, con las restricciones para la aeronavegación en el área de influencia del Proyecto y, en general, con todo tipo de restricciones y reglamentaciones existentes. Se deberá tener en cuenta que pueden existir exigencias y/o restricciones de orden nacional, regional o local. En este sentido, deberán tramitar oportunamente los permisos y licencias a que hubiere lugar.

La Unidad de Planeación Minero Energética UPME no tendrá ningún tipo de responsabilidad en la ejecución de esta obligación, la cual es de responsabilidad exclusiva del Inversionista.

En el predio usado para el desarrollo de las obras, el Inversionista deberá analizar todos los posibles riesgos físicos y tenerlos en cuenta y, en cualquier caso, deberán considerar los posibles riesgos de inundación, condición que deberá ser investigada en detalle por el Inversionista.

Página **27** de **59**

El Inversionista debe elaborar un documento soporte de la selección del predio, el cual deberá ser puesto a disposición del Interventor y de la UPME y hará parte de las memorias del proyecto.

5.1.2 Espacios de reserva

 Los espacios de reserva futuros del STN y STR son objeto de la presente Convocatoria Pública UPME y por tanto deben ser adecuados y dotados con las obras y equipos constitutivos del módulo común, como se describe en el numeral 5.1.5 del presente Anexo No. 1; sin embargo, los equipos eléctricos no son parte de la presente Convocatoria. Los anteriores espacios de reserva podrán ser dispuestos para otros niveles de tensión según necesidades del SIN y previa definición por parte de la UPME, lo cual no alterará lo exigido como espacio en el presente numeral.

Espacios de reserva a cargo del Inversionista incluidos en el alcance y costos de la presente Convocatoria Pública:

A nivel del STN (para activos de uso):

 En la Subestación Corrientes 230 kV se deberán incluir espacios de reserva para la futura instalación de:

 Cuatro (4) bahías que podrán ser utilizadas para la conexión de bahías de línea a 230 kV o bahías de transformación a 230 kV.

A nivel del STR, se deberán incluir espacios de reserva para la futura instalación de:

 Subestación Corrientes 115 kV en tecnología convencional, en configuración barra principal más transferencia, con sus respectivos equipos y/o elementos de patio, vías y casa de control, etc., para:

 Seis (6) bahías de línea a 115 kV configuración barra principal y transferencia – tipo convencional

Una (1) bahía de transferencia configuración barra principal y transferencia – tipo convencional.
Una (1) bahía de conexión a 115 kV proyecto Santo Domingo, configuración barra

principal y transferencia – tipo convencional.
Dos (2) bahías de transformación a 230/115/44 kV, configuración barra principal y transferencia – tipo convencional.

Dos (2) bancos de autotransformadores de 230/115/44 kV de 180 MVA (3X60MVA) cada uno.

Dos (2) bancos de transformadores de 115/44 kV de 40 MVA.
 Dos (2) unidades de reserva (1X60 MVA) cada uno.

Otros espacios de reserva:

Los siguientes espacios de reserva deberán ser considerados por el Inversionista de la presente Convocatoria Pública para su uso por parte del SDL, no obstante, no serán parte del alcance y

Página 28 de 59

15/07/2024

costos de la presente Convocatoria Pública. Su dimensionamiento deberá ser coordinado con el Operador de Red y su costo estará a cargo del Operador de Red:

2 3 4

5

13

18

19 20

21

22

1

- Espacio de reserva para cinco (5) bahías de línea a 115 kV.
- Espacio de reserva para una (1) bahía de autotransformación 230/115/44 kV.
- Espacio de reserva para un (1) banco de autotransformación 230/115/44 kV de 180 MVA
 (3X60 MVA).
- La futura instalación de dos (2) bahías de transformación a 115/44 kV.
- La futura instalación de una (1) bahía de transformación a 44/13.2 kV.
- La futura instalación de un (1) Transformador de potencia 44/13.2 kV de 20 MVA.
- La futura instalación de una bahía de línea a 44 kV, hacia Cocorná Regional.
- Espacio de reserva para un (1) Transformador de potencia 44/13.2 kV de 20 MVA.
 - Espacio de reserva para cinco (5) bahías de línea a 44 kV
- Espacio de reserva para una (1) bahía de transformación 44/13.2 kV
- La futura instalación de cinco (5) celdas a 13.2 kV de salida de circuito.
- La futura instalación de dos (2) celdas a 13.2 kV de medida o auxiliares.
- La futura instalación de una (1) celda de llegada de transformador 44/13.2 kV.
 - Espacio futuro de reserva para cuatro (4) celdas a 13.2 kV
 - Espacio para facilidades necesarias que permitan el uso de los espacios (menciona-dos en los anteriores puntos) e instalación de los correspondientes equipos, como por ejemplo cárcamos, fosos colectores de aceites, zonas de circulación y cargue/descargue, muros cortafuego, barrajes, tableros de control y protecciones, casa de control, etc, sin limitarse a estos.

23 24 25

Se aclara que en cualquier caso, las obras escritas en el numeral 2 del Anexo 1 y los espacios de reserva solicitados en el presente numeral deben ubicarse en el mismo predio o en predios contiguos.

30

31

32

33

El Inversionista deberá dejar adecuado el terreno para la fácil instalación de los equipos en los espacios de reserva objeto de la presente Convocatoria Pública, deberá dejar explanado y/o nivelado el terreno de los espacios de reserva y deberá realizar las obras civiles básicas necesarias para evitar que dicho terreno se deteriore. Adicionalmente, tanto los espacios de reserva como las obras básicas asociadas deberán estar incluidas dentro del mantenimiento que el Inversionista realice a la Subestación, hasta tanto sean ocupados.

34 35 36

37

38

39

40

El Transmisor preparará un documento en el cual se indiquen las características de los espacios de reserva establecidos en el presente Anexo No. 1 y planos con la disposición propuesta de la ubicación, canalizaciones, distribución de los equipos en los espacios de reserva, planos electromecánicos y de obras civiles, y en general toda la ingeniería básica asociada. Esto deberá ser entregado al Interventor quien verificará el cumplimiento de las exigencias para los espacios de reserva y su correcto dimensionamiento.

41 42 43

44

Se debe garantizar que los espacios de reserva (no utilizados por el presente Proyecto) en las Subestaciones del STN y/o del STR no se verán afectados o limitados para su utilización, por

Página **29** de **59**

infraestructura (equipos, Línea, edificaciones, etc.) desarrollada en el marco de la presente Convocatoria Pública.

Se aclara que los equipos a instalarse en los espacios de reserva no son parte del proyecto objeto de la presente Convocatoria Pública. Sin embargo, para las bahías objeto de la presente Convocatoria Pública que queden en diámetros incompletos y puedan utilizarse para ampliaciones futuras, también estará a cargo de la presente Convocatoria el enlace con el otro barraje, de tal manera que dicho enlace pueda ser removido fácilmente en caso de instalación de nuevos equipos.

Espacios de reserva adicionales a los listados en el presente numeral, podrán ser provistos por el Inversionista según su decisión o acuerdos con terceros interesados (Operadores de Red o generadores o grandes consumidores, etc.). No obstante, estos espacios de reserva adicionales no son objeto de la presente Convocatoria, por ello sus costos no podrán ser incluidos en la Propuesta Económica y las condiciones de entrega no son las enmarcadas en el presente Anexo. El nivel de adecuación de los terrenos, la definición de las áreas, sus costos, entre otros aspectos, deberán ser acordados con el tercero en el respectivo Contrato de Conexión, si hay lugar a ello.

5.1.3 Conexiones con equipos existentes

El Inversionista seleccionado deberá proveer los equipos necesarios para hacer completamente compatibles los equipos en funcionalidad y en aspectos de comunicaciones, control y protección, con la infraestructura existente que pueda verse afectada por el desarrollo del Proyecto.

Cuando el Inversionista considere la necesidad de hacer modificaciones a la infraestructura existente, deberá acordar estas modificaciones en el contrato de conexión con el responsable y propietario de los activos relacionados y si es del caso, ponerlo en consideración del Interventor. Estas obras estarán a cargo del Transmisor.

5.1.4 Servicios Auxiliares

El Inversionista deberá proveer los servicios auxiliares en AC y DC suficientes para la topología de la Subestación, incluyendo las reservas para el STN. Se deberá dar cumplimiento con lo señalado en el numeral 3.1 del presente Anexo No. 1.

5.1.5 Infraestructura y Módulo Común

El Inversionista seleccionado deberá realizar la implementación y mantenimiento de todas las obras y equipos constitutivos del módulo común como se describe a continuación:

El Inversionista debe prever el espacio necesario para edificios, equipos y obras del desarrollo inicial del proyecto y los espacios de reserva para futuros desarrollos, objeto de la presente Convocatoria Pública, junto con los espacios de acceso, vías internas, cerramientos, iluminación interior y exterior, etc., según se requiera, considerando la disponibilidad de espacio

Página **30** de **59**

en los predios actuales y/o nuevos, y las eventuales restricciones o condicionantes que establezca el ordenamiento territorial en el área, igualmente estarán a cargo del Inversionista, las vías de acceso a predios de las Subestaciones y/o adecuaciones que sean necesarias en las subestaciones existentes para el desarrollo de las obras objeto de la presente Convocatoria Pública.

El Inversionista deberá suministrar todos los elementos necesarios para la infraestructura y módulo común en la Subestación y/o adecuaciones que sean necesarias, es decir las obras civiles y los equipos que sirven a la Subestación y que son utilizados por todas las bahías de la Subestación, son objeto de la presente Convocatoria Pública. La infraestructura y módulo común de la nueva Subestación estarán conformados como mínimo por los siguientes componentes:

• Infraestructura civil: En el caso de las obras a cargo del Inversionista y para los espacios de reserva, está compuesta por: las vías de acceso a la Subestación, las vías internas de acceso a los patios de conexiones y la adecuación del terreno para los espacios de reserva, alcantarillado, barreras de protección y de acceso al predio, todos los cerramientos de seguridad del predio, filtros y drenajes, pozos sépticos y de agua y/o conexión al acueducto/alcantarillado vecinos, si existen, alumbrado interior y exterior y cárcamos comunes, y en general, todas aquellas obras civiles utilizadas de manera común en la Subestación. En el caso particular de las obras a cargo del Inversionista, es su responsabilidad el proveer todo lo necesario para su construcción, protección física, malla de puesta a tierra, etc., y deberá considerar espacio suficiente en los cárcamos y demás elementos construidos en la presente Convocatoria y que servirán de manera común a los espacios de reserva, según la propuesta que realice el Inversionista de conformidad con el numeral 5.1.2. Para los espacios de reserva se aclara que no deberán ser provistos de malla de puesta a tierra en la presente Convocatoria, pero si se deberán proveer los puntos de conexión para la ampliación de la malla de puesta a tierra para las futuras instalaciones.

• Equipos: Todos los equipos necesarios para las obras descritas en el Numeral 2 del presente Anexo No. 1. Se incluyen, entre otros, los sistemas de automatización, de gestión de medición, de protecciones, control y el sistema de comunicaciones propio de cada Subestación, los materiales de la malla de puesta a tierra y el apantallamiento, los equipos para los servicios auxiliares AC y DC, los equipos de conexión, todo el cableado necesario y las obras civiles asociadas. Se incluyen todos los equipos necesarios para integrar las nuevas bahías con las subestaciones existentes, en conexiones de potencia, control, medida, protecciones y servicios auxiliares. Se aclara que para los espacios de reserva no deberá suministra ningún elemento particular, sin embargo, los equipos instalados por la presente Convocatoria si deberá considerar capacidad o espacio (físico, servicios auxiliares, protecciones, control, etc.) suficiente para recibir la conexión de todos los elementos que a futuro ocuparán los espacios de reserva. Se aclara que particularmente la protección diferencial de barras si deberá tener espacio suficiente para la conexión de todas las bahías actuales y futuras, señaladas en el presente Anexo No. 1.

La Interventoría analizará todas las previsiones que faciliten la evolución de las obras descritas en el Numeral 2 del presente Anexo No. 1, e informará a la UPME el resultado de su análisis.

Página **31** de **59**

La medición para efectos comerciales se sujetará a lo establecido en la regulación pertinente, en particular el Código de Medida (Resolución CREG 038 de 2014 o aquella que la modifique o sustituya).

El dimensionamiento de la infraestructura incluido edificios, pórticos, vías, etc., deberá considerar las reservas objeto de la presente Convocatoria Pública.

Nota 1: El Inversionista deberá prever y dejar disponible al Inversionista del STR, todas las facilidades para que pueda dar cumplimiento a sus responsabilidades, en lo referente a conexiones de potencia, protecciones, control, comunicaciones y medidas, sin limitarse a éstas.

Nota 2: El Inversionista deberá realizar la adecuación y mantenimiento de los espacios de reserva para futuras ampliaciones de la Subestación indicados en este Anexo, en relación con la explanación y adecuación de la plataforma, el suministro del material de grava, vías perimetrales y de un adecuado sistema de filtros y drenajes que evite posibles inundaciones de las áreas de reserva. Estas labores de adecuación y mantenimiento de las reservas futuras estarán a cargo del Inversionista desde la puesta en servicio del proyecto hasta el momento de inicio de las obras de ampliación en las áreas de reserva. La construcción de la malla de tierra en los espacios de reserva para desarrollos futuros no hace parte del alcance del Inversionista dentro de esta Convocatoria Pública, pero si se deberán proveer los puntos de conexión para la ampliación de la malla existente para las ampliaciones futuras.

5.2 Normas para fabricación de los equipos

El Inversionista deberá suministrar equipos en conformidad con la última edición de las Normas *International Electrotechnical Commission* – IEC, *International Organization for Standardization* – ISO, ANSI – American National Standars Institute, *International Telecomunicaciones Union* - ITU-T, Comité Internacional Spécial des Perturbations Radioélectriques – CISPR. El uso de normas diferentes deberá ser sometido a consideración del Interventor quien conceptuará sobre su validez en aspectos eminentemente técnicos y de calidad.

5.3 Condiciones sísmicas de los equipos

Los suministros deberán tener un nivel de desempeño sísmico apto de acuerdo con la publicación IEEE-693 (2018): "Recommended Practice for Seismic Design of Substations", o las publicaciones de las partes de requisitos sísmicos de la familia de estándares IEC 62271: "High-voltage switchgear and controlgear", en versiones más recientes. El Inversionista seleccionado deberá entregar copias al Interventor de las memorias de cálculo en donde se demuestre que los suministros son aptos para soportar las condiciones sísmicas del sitio de instalación. Si aplica para los suministros, el Inversionista seleccionado deberá entregar copias al Interventor del certificado de la prueba tipo para el mismo modelo y nivel de tensión, según la publicación IEC 60068-3-3: "Environmental testing - Part 3-3: Supporting documentation and guidance - Seismic test methods for equipment".

Página 32 de 59

5.4 Procedimiento general del diseño

1

2

4 5

6

7 8

9

10 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26 27

28

29

30 31

32

33

34

35

36

37 38

39

40

41

42

43 44

45

46

Este procedimiento seguirá la siguiente secuencia:

a) Inicialmente, el Transmisor preparará las Especificaciones Técnicas del Proyecto, que gobernarán el desarrollo total del Proyecto.

En dicho documento se consignará toda la normatividad técnica, y las especificaciones para llevar a cabo la programación y control del desarrollo de los trabajos; especificaciones y procedimientos para adelantar el Control de Calidad en todas las fases del Proyecto; las definiciones a nivel de Ingeniería Básica tales como: resultados de estudios del sistema eléctrico asociado con el Proyecto; parámetros básicos de diseño (corrientes nominales, niveles de aislamiento, capacidades de cortocircuito, tiempos de despeje de falla, entre otros); hojas de datos de los equipos; diagramas unifilares generales; especificaciones técnicas detalladas de los equipos y materiales; filosofía de control, medida y protección; previsiones para facilitar la evolución de la Subestación; especificaciones de Ingeniería de Detalle; procedimientos y especificaciones de pruebas en fábrica; procedimientos de transporte, almacenamiento y manejo de equipos y materiales; los procedimientos de construcción y montaje; los procedimientos y programaciones horarias durante los cortes de servicio de las instalaciones existentes que quardan relación con los trabajos del Proyecto; los procedimientos de intervención sobre equipos existentes; los procedimientos y especificación de pruebas en campo, los procedimientos para efectuar las pruebas funcionales de conjunto; los procedimientos para desarrollar las pruebas de puesta en servicio, los procedimientos de puesta en servicio del Proyecto y los procedimientos de operación y mantenimiento.

Las Especificaciones Técnicas podrán desarrollarse, en forma parcial y continuada, de tal forma que se vayan definiendo paso a paso todos los aspectos del Proyecto, para lograr en forma acumulativa el Código Final que vaya rigiendo el Proyecto.

Todas las actividades de diseño, suministro, construcción, montaje y pruebas deben estar incluidas en las especificaciones técnicas del Proyecto. El Interventor presentará un informe a la UPME en el que se detalle y se confirma la inclusión de todas y cada una de las actividades mencionadas. No podrá adelantarse ninguna actividad sin que antes haya sido incluida la correspondiente característica o Especificación en las Especificaciones Técnicas del Proyecto.

- b) Las Especificaciones Técnicas del Proyecto serán revisadas por el Interventor, quien hará los comentarios necesarios, recomendando a la UPME solicitar todas las aclaraciones y justificaciones por parte del Transmisor. Para lo anterior se efectuarán reuniones conjuntas entre el <u>Transmisor y el Interventor</u> con el fin de lograr los acuerdos modificatorios que deberán plasmarse en comunicaciones escritas.
- c) Con base en los comentarios hechos por el Interventor y acordados con el Transmisor, este último emitirá la nueva versión de las Especificaciones Técnicas del Proyecto.

Página **33** de **59**

d) Se efectuarán las revisiones necesarias hasta llegar al compendio final, que será el documento de cumplimiento obligatorio.

En esta especificación, se consignará la lista de documentos previstos para el Proyecto representados en especificaciones, catálogos, planos, memorias de cálculos y reportes de pruebas.

 e) Los documentos serán clasificados como: documentos de Ingeniería Básica; documentos de Ingeniería de Detalle; memorias de cálculos a nivel de Ingeniería Básica y de Detalle; documentos de seguimiento de los suministros; y documentos que especifiquen las pruebas en fábrica y en campo; los procedimientos de montaje, puesta en servicio y la operación y mantenimiento.

f) La lista y clasificación de la documentación debe ser preparada por el Transmisor y entregada a la Interventoría para revisión.

5.4.1 Los documentos de ingeniería básica

Son aquellos que definen los parámetros básicos del Proyecto; dan a conocer el dimensionamiento del mismo; definen los criterios básicos de diseño; determinan las características para la adquisición de equipos; especifican la filosofía de comunicaciones, control, medición y protección; establecen la implantación física de las obras; especifican las previsiones para el desarrollo futuro del Proyecto; establecen las reglas para efectuar la Ingeniería de Detalle e incluye las memorias de cálculos que soportan las decisiones de Ingeniería Básica.

Todos los documentos de Ingeniería Básica (y toda la información necesaria, aunque ella no esté explícitamente citada en estas especificaciones, acorde con lo establecido en las Normas Nacionales e Internacionales, aplicables al diseño y montaje de este tipo de instalaciones) serán entregados por el Transmisor al Interventor para su revisión, verificación del cumplimiento de condiciones y para conocimiento de la UPME. Sobre cada uno de estos documentos, la Interventoría podrá solicitar aclaraciones o justificaciones que estime conveniente, haciendo los comentarios respectivos al Transmisor y a la UPME <u>la respectiva recomendación</u> si es del caso.

La siguiente es la lista de documentos y planos mínimos de la ingeniería básica:

5.4.1.1 Memorias de cálculo electromecánicas

- Criterios básicos de diseño electromecánico.
- Memoria de medida de resistividad del terreno.
- Memoria de dimensionamiento de cárcamos, ductos y bandejas porta-cables.
- Memoria de dimensionamiento de los servicios auxiliares AC.
- Memoria de dimensionamiento de los servicios auxiliares DC.
- Memoria de cálculo de distancias mínimas y de seguridad.
- Memoria de dimensionamiento de transformadores de tensión y corriente.
 - Coordinación de aislamiento y estudio de sobretensiones.

Página 34 de 59

- Memoria de cálculo del sistema de puesta a tierra.
 - Memoria de cálculo sistema de apantallamiento.
- 3 Memoria de cálculo de aisladores de alta y media tensión.
- Memoria de cálculo selección de conductores aéreos y barrajes.
 - Memoria de cálculo selección de cables aislados de media tensión (si aplica).
- Memoria de cálculo del sistema de iluminación exterior e interior.
 - Análisis de identificación de riesgos.

7 8 9

2

5

5.4.1.2 Especificaciones equipos

10 11

13

- Especificación técnica equipos de patio.
- Especificación técnica sistema de puesta a tierra.
 - Especificación técnica sistema de apantallamiento.
- Especificación técnica dispositivos de protección contra sobretensiones.
- Especificación técnica gabinetes de control y protección.
- Especificación técnica equipos de medida, control, protección y comunicaciones (bahías de Línea y de transformadores).
- Especificación técnica de cables desnudos, para barrajes e interconexión de equipos.
- Especificación funcional del sistema de control.
- Lista de señales para sistema de control, de los equipos de la Subestación.
- Especificación técnica de los servicios auxiliares AC/DC.
- Especificación técnica del sistema de alumbrado interior y exterior.
 - Especificaciones técnicas para montaje electromecánico, pruebas individuales de equipos, pruebas funcionales y de puesta en servicio.

24 25 26

23

5.4.1.3 Características técnicas de los equipos

27 28

29

30

31

32

33

34

35

37

- Características técnicas, equipos.
 - Interruptores
 - Seccionadores.
 - Transformadores de corriente.
 - Transformadores de tensión.
 - Descargadores de sobretensión.
 - Aisladores y cadenas de aisladores.
 - Trampas de onda (si aplica)
- Dimensiones de equipos.
 - Características técnicas, cables de fuerza y control.
- Características técnicas, dispositivo de protección contra sobretensiones
- Características técnicas, sistema de automatización y control.
- Características técnicas, sistema de comunicaciones.
- Características de equipos y materiales del sistema de servicios auxiliares AC/DC.
- Características técnicas, cables desnudos para interconexión de equipos y barrajes.

43 44

5.4.1.4 Planos electromecánicos

45

Página **35** de **59**

- Diagrama unifilar de la Subestación.
 - Diagrama unifilar con características de equipos.
- Diagrama unifilar de control y protecciones.
- Diagrama unifilar de medidas.
 - Diagrama unifilar servicios auxiliares AC/DC.
- Arquitectura sistema de control de la Subestación.
- Planimetría del sistema de apantallamiento.
 - Planimetría del sistema de puesta a tierra.
- 9 Planos de disposición física de equipos en 230 kV y 115 kV (planta y secciones).
- Planos de disposición de gabinetes y equipos en sala de control.
- Planos de ubicación de equipos en sala de control.
- 12 Elevación general de edificaciones y equipos.
- Planimetría del sistema de iluminación interior y exterior.
- Planos de detalles de montaje y de ruta de bandejas porta-cables, cárcamos y tuberías.
- Planimetría de aisladores y cadenas de aisladores.
 - Plano de disposición física de conectores.
 - Planimetría general de nomenclatura operativa.

5.4.1.5 Planos de obras civiles

19 20 21

24

16 17

18

2

5

8

- Plano de localización de la Subestación.
- 22 Plano disposición de cimentaciones de equipos.
- Plano cimentación de equipos y pórticos.
 - Plano de drenajes de la Subestación.
- Plano de cárcamos y ductos para cables en patio.
- Plano de cárcamos y ductos para cables en sala de control.
- Planos casa de control.
- Plano disposición de bases para equipos en sala de control.
- 29 Plano cerramiento de la Subestación.
- 90 Plano obras de adecuación.

31 32

5.4.1.6 Estudios y trabajos de campo

33 34

35

- Levantamiento topográfico del lote seleccionado.
- Estudio de suelos mediante apique o sondeos en el área del lote seleccionado.
- Identificación de los accesos y presentación de recomendaciones para el transporte de equipos y materiales.
- Presentar informes de progreso y programas de trabajo mensuales.
- Análisis de diseños típicos y definición de parámetros.
- Análisis de resultados de suelos y diseños de obras civiles.
 - Elaboración informe de diseños y memorias de cálculo.

41 42 43

5.4.2 Los documentos de la ingeniería de detalle

44

Son los necesarios para efectuar la construcción y el montaje del Proyecto; permiten definir y especificar cantidades y características de material a granel o accesorio e incluye todas las memorias de cálculos que soporten las decisiones en esta fase de ingeniería. Se fundamentará en las especificaciones de Ingeniería de Detalle que se emitan en la fase de Ingeniería Básica.

4 5 6

7

8

9

1

3

Todos los documentos de Ingeniería de Detalle serán entregados por el Inversionista seleccionado al Interventor para su revisión, verificación del cumplimiento de condiciones y para conocimiento de la UPME. Sobre cada uno de estos documentos, la Interventoría podrá solicitar aclaraciones o justificaciones que estime conveniente, haciendo los comentarios respectivos al Inversionista seleccionado y a la UPME si es del caso.

10 11 12

13

14

Los documentos que sirven para hacer el seguimiento a los suministros serán aquellos que preparen y entreguen los proveedores y fabricantes de los equipos y materiales. Estos documentos serán objeto de revisión por parte de la Interventoría quien formulará los comentarios y pedirá aclaraciones necesarias al Inversionista seleccionado.

15 16 17

18 19 Los documentos que especifiquen y muestren los resultados de las pruebas en fábrica y en campo, la puesta en servicio, la operación del Proyecto y el mantenimiento, serán objeto de revisión por parte de la Interventoría, quien hará los comentarios al Inversionista seleccionado y a la UPME si es del caso.

20 21 22

Con base en los comentarios, observaciones o conceptos realizados por la Interventoría, la UPME podrá trasladar consultas al Inversionista seleccionado.

23 24 25

La siguiente es la lista de documentos y planos mínimos de la Ingeniería de Detalle:

26 27

5.4.2.1 Cálculos detallados de obras civiles

28 29

30

31

34

35

38

- Criterios básicos de diseño de obras civiles.
- Dimensiones y pesos de equipos.
- Memorias de cálculo estructural para las cimentaciones de equipos de patio.
- Memorias de cálculo estructural para cimentación del edificio de control y de la caseta de relés.
 - Memoria de cálculo muro de cerramiento.
 - Memoria de cálculo árboles de carga para estructuras soporte de equipos.
- Memorias de cálculo estructural para canaletas de cables eléctricos exteriores y cárcamos interiores en edificio de control y casetas de relés.
 - Memoria de cálculo de árboles de carga para estructuras de pórticos de Líneas y barrajes.
- Memorias de cálculo para vías, parqueo y zonas de maniobra en pavimento rígido.
- Memoria de cálculo estructural para canaletas de cables exteriores e interiores en casa de control.
- Memoria de cálculo para el sistema de drenaje de aguas lluvias.
- Memoria de cálculo sistema de acueducto.

5.4.2.2 Planos de obras civiles

- Planos para construcción de bases para equipos.
- Planos estructurales con árboles de carga para construcción de estructuras soporte para equipos y pórticos.
 - Planos para construcción de cimentaciones para equipos.
 - Planos para construcción de cárcamos de cables, ductos y cajas de tiro.
 - Planos para construcción de acabados exteriores.
- 9 Planos para construcción del sistema de drenajes y aguas residuales.
- Planos estructurales para construcción de caseta de control, ubicación bases de tableros,
 equipos y canales interiores.
 - Planos arquitectónicos y de acabados para la caseta de control.
 - Planos para construcción de vías.

13 14 15

12

1

2

6

7

8

5.4.2.3 Diseño detallado electromecánico

16 17

18

19

20

21

22

El Inversionista será responsable de la ejecución y elaboración del diseño eléctrico y mecánico detallado necesario y por tanto deberá presentar para la revisión y verificación de la Interventoría: memorias de cálculo, planos electromecánicos finales para construcción, diagramas de cableado, diagramas esquemáticos de control, protecciones y medidas, lista detalladas de materiales y toda la información necesaria aunque ella no esté explícitamente citada en estas especificaciones y en un todo de acuerdo con lo establecido en las Normas Nacionales e Internacionales, aplicables al diseño y montaje de éste tipo de instalaciones.

23 24 25

El Inversionista deberá entregar a la Interventoría para su revisión y verificación la información y planos según el Programa de Entrega de Documentación Técnica aprobado, el cual deberá contener como mínimo la siguiente documentación:

27 28 29

26

a. Sistema de puesta a tierra:

30 31

33

34

35

- Planos de malla de puesta a tierra planta y detalles de conexiones a equipos y estructuras.
- Lista de materiales referenciados sobre planos.
 - Plano de detalles de conexión de equipos y tableros a la malla de tierra.
 - Memorias de cálculo de diseño de la malla de puesta a tierra.
 - Procedimiento para la medida de la resistencia de puesta a tierra, según el RETIE.
 - Procedimiento para la medida de las tensiones de paso y contacto, según el RETIE.

36 37 38

b. Equipos principales:

39 40

41

- Equipos de Patio: Disposición general de la planta y cortes del patio de conexiones, incluyendo las distancias entre los centros (ejes) de los equipos.
- Peso de cada uno de los equipos y localización del centro de masa con relación al nivel
 rasante del patio.
- Características geométricas de equipos y peso de los soportes de equipos, sistemas de anclaje.

Página 38 de 59

- Diseño de las cimentaciones de los equipos de patio.
- Dimensiones requeridas para canales de cables de potencia y cables de control. Diseño
 civil de los canales de cables.
- Diseño geométrico y sistemas de fijación de las bandejas portacables y de ductos para
 cables entre los equipos y las bandejas.
- 6 Localización, geometría y sistemas de anclaje de los gabinetes de conexión.

7 8 **c. E**

9

12

13

14

15

16

17

18

19

c. Equipos de patio:

- Para equipos de corte y derivación de Línea y transformación, transformadores de medida,
 descargadores de sobretensiones.
 - Diagramas eléctricos completos para control, señalización, etc., hasta borneras de interconexión.
 - Características técnicas definitivas, dimensiones y pesos.
 - Placas de características técnicas.
 - Información técnica complementaria y catálogos.
 - Manuales detallados para el montaje de los equipos.
 - Manuales detallados para la operación y mantenimiento.
 - Protocolo de pruebas en fábrica.
 - Procedimiento para pruebas en sitio.

20 21 22

d. Para tableros:

23 24

27 28

29

30

31

34

35

36 37

38 39

40

41

44

- Diagramas esquemáticos que incluyan todos los circuitos de c.a. y c.c.
- Diagramas eléctricos completos hasta borneras de interconexión para circuitos de control,
 señalización y protección.
 - Lista de instrumentos de control medida, señalización, protecciones, fusibles, etc., que serán instalados en los tableros, suministrando información técnica y catálogos respectivos con indicación clara del equipo suministrado.
 - Planos de disposición física de elementos y equipos dentro de los tableros.
 - Instrucciones detalladas de pruebas y puesta en servicio.
- Elaboración de planos desarrollados, esquemáticos de control, protección, medida,
 telecontrol y teleprotección, incluyendo:
 - Diagramas de principio y unifilares
 - Diagramas de circuito
 - Diagramas de localización exterior e interior.
 - Tablas de cableado interno y externo.
 - Disposición de aparatos y elementos en tableros de control.
 - El Inversionista debe entregar al Interventor como mínimo, los siguientes diagramas de principio:
 - Diagramas de protección y del sistema de gestión de los relés.
- Diagramas del sistema de control de la Subestación.
- Diagramas de medición de energía.
 - Diagramas lógicos de enclavamientos.
- Diagramas de comunicaciones.

Página **39** de **59**

- Diagramas de bloque para enclavamientos eléctricos de toda la Subestación.
 - Listado de cables y borneras.
 - Planos de Interfase con equipos existentes.
 - Filosofía de operación de los sistemas de protección, control, sincronización, señalización y alarmas.

1

2

3

4

e. Reportes de Pruebas:

8 9

10

11 12

13

 Treinta (30) Días calendario posterior a la fecha en la cual se efectuó la última prueba, el Inversionista deberá suministrar a la Interventoría dos (2) copias que contengan cada uno un juego completo de todos los reportes de pruebas de fábrica por cada uno de los equipos de potencia, control, protección, medida, comunicaciones, etc., que hayan sido suministrados.

Las instrucciones deberán estar en idioma español.

14 15

5.4.3 Estudios del sistema

16 17

18

19

20

21

Bajo esta actividad, el Inversionista seleccionado deberá presentar al Interventor para los fines pertinentes a la Interventoría los estudios eléctricos que permitan definir los parámetros útiles para el diseño básico y detallado de la Subestación y de las Líneas; entre todos los posibles, se destacan como mínimo la elaboración de los siguientes documentos técnicos y/o memorias de cálculo:

22 23 24

25

26

30

31 32

- Condiciones atmosféricas del sitio de instalación, parámetros ambientales y meteorológicos, contaminación ambiental, estudios topográficos, geotécnicos, sísmicos y de resistividad del terreno.
- Cálculo de flechas y tensiones.
- Flujos de carga; estudios de corto circuito; estudio de estabilidad para determinar tiempos máximos de despeje de fallas; y cálculos de sobretensiones.
 - Estudios de ajuste y coordinación de protecciones.
 - Selección de aislamiento, incluye selección de descargadores de sobretensiones y distancias eléctricas.
- Estudio de cargas ejercidas sobre las estructuras metálicas de soporte debida a sismo y a
 corto circuito.
- Selección de equipos, conductores para barrajes, cables de guarda y conductores aislados.
- Memoria de revisión de los enlaces de comunicaciones existentes.
- Estudio de apantallamiento contra descargas atmosféricas
- Dimensionamiento de los servicios auxiliares AC y DC.
- Informe de interfaces con equipos existentes.
- Estudios ambientales, programas del Plan de Manejo Ambiental, (PMA) de acuerdo con el Estudio de Impacto Ambiental (EIA).
- Ajustes y coordinación de relés de protecciones, dispositivos de mando sincronizado y registradores de fallas.
- Análisis de riesgos de origen eléctrico de acuerdo con el artículo 15.1 del título 5 del RETIE,
 resolución 40117 del 02 de abril de 2024.

Página 40 de 59

Cada uno de los documentos o memorias de cálculo, antes referidos, deberán destacar como mínimo los siguientes aspectos:

- Objeto del documento técnico o de la memoria de cálculo.
- Origen de los datos de entrada.
- Metodología para el desarrollo soportada en normas o estándares de amplio reconocimiento, por ejemplo, en Publicaciones IEC, ANSI o IEEE.
- 9 Resultados.
 - Bibliografía.

5.4.4 Distancias de seguridad

Las distancias de seguridad aplicables en las Subestaciones deben cumplir los lineamientos establecidos en el RETIE, en su última revisión y/o actualización.

5.5 Equipos de potencia

5.5.1 Interruptores

Los interruptores de potencia deben cumplir las prescripciones de la última edición de las siguientes normas, o su equivalente ANSI, según aplique al tipo de equipo a suministrar:

- IEC 62271-100: "High-voltage alternating current circuit-breakers"
- IEC 60694: "Common specifications for high-voltage switchgear and controlgear standards".
- IEC 60265-2: " High-voltage switches- Part 2: High-voltage switches for rated voltages of 52 kV and above"
- IEC 60376: "Specification of technical grade sulfur hexafluoride (SF6) for use in electrical equipment".
- IEC 62155: "Hollow pressurized and unpressurized ceramic and glass insulators for use in electrical equipment with rated voltages greater than 1000 V".
- IEEE Std. 693-2018: "Recommended practice for seismic design of substations", o su versión más actualizada

Todos los interruptores de subestaciones nuevas, en configuración interruptor y medio, deberán contar con transformadores de corriente en ambos extremos del interruptor, de acuerdo con la recomendación IEEE Std C37.234-2009 "IEEE Guide for Protective Relay Applications to Power System Buses".

Mecanismos de operación: Los interruptores deberán tener mando tripolar y monopolar y su mecanismo de operación deberá ser tipo resorte. No se permitirán fuentes centralizadas de aire comprimido o aceite para ninguno de los interruptores; el mecanismo de operación deberá ser equipado con contactos de cierre y apertura, los cuales deberán ser eléctricamente independientes.

Página 41 de 59

El mecanismo de operación debe ser equipado con un indicador mecánico de posición del interruptor, con señalización fácilmente visible desde el exterior del gabinete, donde se indique si el interruptor se encuentra cerrado o abierto. Adicionalmente, debe tener un contador de operación donde se indique la cantidad total de operaciones del interruptor.

 El número y características técnicas de las bobinas de disparo de los interruptores serán definidos por el Inversionista mediante sus propios análisis técnicos y eléctricos, cumpliendo con los requerimientos técnicos y de pruebas de la norma IEC 60947-100 en su última versión. En cualquier caso, se debe garantizar que el interruptor cuente con una bobina de cierre y dos (2) bobinas de apertura, cada una de las cuales debe alimentarse con un circuito DC independiente con su respectiva protección (fusible o MCB). El esquema de disparo redundante debe alinearse con alguno de los métodos de inicio del esquema de falla interruptor expuestos en la sección 7.6 de la norma IEEE C37.119-2016.

 Requisitos Generales: Los armarios y gabinetes deberán tener como mínimo el grado de protección IP54 de acuerdo con IEC 60947-1 o su equivalente en ANSI, el mecanismo de operación será tipo resorte. No se permitirán fuentes centralizadas de aire comprimido o aceite para ninguno de los interruptores. Los circuitos de fuerza y control deben ser totalmente independientes.

Pruebas de rutina: Los interruptores deben ser sometidos a las pruebas de rutina establecidas en la publicación IEC 62271-100 o su equivalente en ANSI. Copia de los respectivos protocolos de prueba deberán ser presentados para fines pertinentes de la Interventoría.

Pruebas tipo: En caso de que el Interventor lo requiera, el Transmisor debe entregar una copia de los reportes de pruebas tipo hechas sobre interruptores iguales o similares a los incluidos en el suministro de acuerdo con la publicación IEC 62271-100 o su equivalente en ANSI. Si el Transmisor no dispone de estos documentos deberá hacer las respectivas pruebas a su costa.

Pruebas en Sitio: se deben efectuar las pruebas necesarias en sitio para verificar las condiciones de estado y funcionamiento de los interruptores de potencia.

5.5.2 Descargadores de sobretensiones

 Los descargadores de sobretensiones deben cumplir las prescripciones de la última edición de las siguientes normas o su equivalente ANSI, según aplique al tipo de equipo a suministrar:

• IEC 60099-4: "Surge Arrester. Part 4: Metal oxide surge arresters without gaps for a.c. systems"

 IEC 61264: "Ceramic pressurized hollow insulators for high-voltage switchgear and controlgear".

Pruebas de rutina: Los descargadores deben ser sometidos a las pruebas de rutina establecidas en la publicación IEC 60099-4 o su equivalente en ANSI. Copia de los respectivos protocolos de prueba deberán ser presentados para los fines que requiera la Interventoría.

Página **42** de **59**

F-DE-013 V.3

15/07/2024

Pruebas tipo: En caso de que el Interventor lo requiera, el Transmisor debe entregar una copia de los reportes de pruebas tipo hechas sobre descargadores iguales o similares a los incluidos en el suministro de acuerdo con la publicación IEC 60099-4 o su equivalente en ANSI. Si el Transmisor no dispone de estos documentos deberá hacer las respectivas pruebas a su costa.

Pruebas en Sitio: Se deben efectuar las pruebas necesarias en sitio para verificar las condiciones de estado y funcionamiento de los descargadores.

5.5.3 Seccionadores y seccionadores de puesta a tierra

Los Seccionadores y Seccionadores de Puesta a Tierra, deben cumplir las prescripciones de la última edición de las siguientes normas o su equivalente ANSI, según se aplique al tipo de equipo a suministrar:

- IEC 62271-102: "Alternating current disconnectors and earthing switches", o su equivalente en ANSI.
- IEC 60273: "Characteristics of indoor and outdoor post insulators for systems with nominal voltages greater than 1000 V".
- IEC 60694 "Common clauses for high-voltage switchgear and controlgear standards".

 Los seccionadores podrán ser de accionamiento tripolar y deberán poseer mecanismos de operación manual y motorizado, dispuestos en gabinetes de acero galvanizado o aluminio, con grado de protección IP54. El mecanismo de operación deberá ser suministrado con contactos auxiliares, eléctricamente independientes y deberá contar con un sistema de condena que evite la operación eléctrica y mecánica.

 El control del mecanismo de operación podrá ser operado local o remotamente y el modo de operación se podrá realizar mediante un selector de tres posiciones: LOCAL-DESCONECTADO-REMOTO. La operación local se realizará mediante dos pulsadores: CIERRE y APERTURA. El mecanismo de operación debe tener claramente identificadas las posiciones de cerrado (I) y abierto (O).

Para los seccionadores con cuchilla de puesta a tierra, se deberá suministrar un enclavamiento eléctrico y mecánico que no permita cerrar el seccionador mientras la cuchilla de puesta a tierra esté cerrada.

Pruebas de rutina: Los seccionadores deben ser sometidos a las pruebas de rutina establecidas en la publicación IEC 62271-102 o su equivalente en ANSI. Copia de los respectivos protocolos de prueba deberán ser presentados para los fines que requiera la Interventoría.

Pruebas tipo: En caso de que el Interventor lo requiera, el Transmisor debe entregar una copia de los reportes de pruebas tipo hechas sobre seccionadores iguales o similares a los incluidos en el suministro de acuerdo con la publicación IEC 62271-102 o su equivalente en ANSI, si el Transmisor no dispone de estos documentos deberá hacer las respectivas pruebas a su costa.

Página **43** de **59**

15/07/2024

Pruebas en Sitio: se deben efectuar las pruebas necesarias en sitio para verificar las condiciones de estado y funcionamiento de los seccionadores.

5.5.4 Transformadores de tensión

 Los Transformadores de Tensión deben cumplir las prescripciones de la última edición de las siguientes normas o su equivalente ANSI, según se aplique al tipo de equipo a suministrar:

- IEC 60044-4: "Instrument transformers. Measurement of partial discharges" o su equivalente en ANSI.
- IEC 60044-2: "Inductive Voltage Transformers"
- Publicación IEC 60186, "Voltage Transfomers", IEC 60358, "Coupling capacitor and capacitor dividers".
- Publicación IEC-61869-1/3/5: "Inductive/capative Voltage Transformers".
- IEC 60296: "Specification for unused mineral insulating oils for transformers and switchgear".

Los transformadores de tensión deben ser del tipo divisor capacitivo, para conexión entre fase y tierra. La precisión de cada devanado debe cumplirse sin la necesidad de utilizar cargas externas adicionales. La precisión, deberá ser según normas IEC o su equivalente en ANSI, y específicamente, cumplir todos los requisitos técnicos exigidos por la Resolución CREG 025 de 1995, en su última revisión.

Pruebas de rutina: Los transformadores de tensión deben ser sometidos a las pruebas de rutina establecidos en la publicación IEC 60186, sección 5 y 25, IEC 60358 cláusula 7.1. o su equivalente en ANSI. Copia de los respectivos protocolos de prueba deberán ser presentados para fines pertinentes de la Interventoría.

Pruebas tipo: En caso de que el Interventor lo requiera, el Transmisor debe entregar una copia de los reportes de pruebas tipo hechas sobre transformadores de tensión iguales o similares a los incluidos en el suministro de acuerdo con la publicación IEC 60186, sección 4 y 24 e IEC 60358, cláusula 6.2, o sus equivalentes en ANSI. Si el Transmisor no dispone de estos documentos deberá hacer las respectivas pruebas a su costa.

Pruebas en Sitio: Se deben efectuar las pruebas necesarias en sitio para verificar las condiciones de estado y funcionamiento de los Transformadores de Tensión.

5.5.5 Transformadores de corriente

Los Transformadores de Corriente deben cumplir las prescripciones de la última edición de las siguientes normas, o su equivalente en ANSI, según se aplique al tipo de equipo a suministrar:

- IEC 60044-4: "Instrument transformers. Measurement of partial discharges" o su equivalente en ANSI.
- IEC 60044-1: "Current Transformers".

Página **44** de **59**

F-DE-013 V.3

15/07/2024

• IEC-61869-1/2: "Current Transformers: General requirements".

1 2 3

4

5

Los transformadores de corriente deben ser de relación múltiple con cambio de relación en el secundario. Deben tener precisión 0.2s, según IEC o su equivalente en ANSI, y específicamente, cumplir todos los requisitos técnicos exigidos por la Resolución CREG 025 de 1995, en su última revisión.

6 7 8

9

10

Pruebas de rutina: Los transformadores de corriente deben ser sometidos a las pruebas de rutina establecidos en la publicación IEC 60044-1 e IEC 60044-6 o su equivalente en ANSI, Copia de los respectivos protocolos de prueba deberán ser presentados para fines pertinentes de la Interventoría.

11 12 13

14

15

16

Pruebas tipo: En caso de que el Interventor lo requiera, el Transmisor debe entregar una copia de los reportes de pruebas tipo hechas sobre transformadores de corriente iguales o similares a los incluidos en el suministro de acuerdo con la publicación IEC 60044-1 e IEC 60044-6, o su equivalente en ANSI. Si el Transmisor no dispone de estos documentos deberá hacer las respectivas pruebas a su costa.

17 18 19

Pruebas en Sitio: Se deben efectuar las pruebas necesarias en sitio para verificar las condiciones de estado y funcionamiento de los transformadores de corriente.

20 21 22

5.5.6 Equipo GIS o Híbrido

23 24

25

En caso de que el equipo propuesto por el Inversionista sea GIS (Gas Insulated Substations) o Híbrido, además de cumplir con las normas antes mencionadas, debe cumplirse la siguiente normatividad:

26 27 28

Los equipos componentes de la celda compacta, híbrida o GIS, deberán cumplir con las características técnicas garantizadas que les aplique de los equipos individuales tal como lo indicado en estas especificaciones.

30 31 32

35

36

38

29

- Instrument transformer IEC6189
- 33 Insulation Coordination IEC60071
- High voltage switchgear and controlgear IEC62271
 - Insulated bushings above 1000V IEC60137
 - Partial discharge measurement IEC60270
- Specification and acceptance of new SF6 IEC60376
 - Guide for checking SF6 IEC 60480
- Common clauses or HV switchgear and controlgears standards IEC62271-1
- Guide for selection of insulators in respect of pulled conditions IEC60815-1/2
- Cable connections of gas insulated metal-enclosed switchgears IEC 62271-209
- Use and handling SF6 in HV switchgears and controlgears IEC62271-303
- Direct connection between GIS and power transformer IEC61639

El equipo GIS será sometido a pruebas de rutina que consisten en pruebas de alta tensión, pruebas mecánicas y pruebas de gas.

Se deben suministrar certificados de pruebas tipo de pruebas de alta tensión, prueba de temperatura, prueba de gas y prueba sísmica.

5.5.7 Sistema de puesta a tierra

Deberá diseñarse para que, en condiciones normales y anormales, no se presente ningún peligro para el Personal situado en cualquier lugar de la subestación, al que tenga acceso.

Todos los requerimientos para la malla de tierra de la nueva Subestación y en las subestaciones existentes (si aplica), estarán de acuerdo con la última revisión de la publicación IEEE No.80-2013 "Guide for Safety and Alternating Current Substation Grounding" e IEEE Std. 81-2012 "Guide for Measuring Earth Resistivity, Ground Impedance, and Earth Surface Potentials of a Grounding System". El diseño, materiales y validación del sistema de puesta a tierra deberán cumplir con los requerimientos que le apliquen del artículo 15° del RETIE en su última versión.

Todos los elementos sin tensión como equipos, estructuras metálicas expuestas y no expuestas, accesorios metálicos, aisladores de soporte y otros, se conectarán directamente a la malla de tierra en el punto más cercano y conveniente, utilizando empalmes de soldadura exotérmica.

La malla de tierra se diseñará para cubrir efectivamente la Subestación completa y garantizar el control de las tensiones de toque y de paso hasta 1,0 m por fuera de la cerca o malla de cerramiento de la Subestación, según requerimiento del RETIE.

Para propósitos del diseño final del sistema de tierra el Transmisor realizará los ensayos de resistividad en el sitio, con el objeto de comprobar la resistividad del terreno, y realizará las mediciones de resistencia de puesta a tierra y de las tensiones de paso y contacto, según los requerimientos del RETIE en su última versión, de tal manera que se garantice la seguridad de las Personas en torno a la Subestación.

5.5.8 Apantallamiento de la subestación

El diseño del sistema de apantallamiento de la nueva Subestación Corrientes 230 kV y de las subestaciones existentes intervenidas dentro del alcance de la presente Convocatoria Pública, deberá realizar una evaluación del nivel de riesgo de las instalaciones ante descargas atmosféricas directas de acuerdo con los procedimientos de la norma IEC 62305-2 "Protection against lightning – Part 2: Risk management".

El diseño del sistema de apantallamiento deberá considerar elementos captadores de descargas atmosféricas como cables de guarda y puntas captadoras de material apropiado para las condiciones ambientales existentes en el sitio, particularmente del nivel ceraúnico, y deberá ser verificado según el método electrogeométrico referido en las normas IEC 62305-2 o NTC 4552. Todos los cables de guarda serán aterrizados mediante conductores bajantes de

Página **46** de **59**

F-DE-013 V.3

cobre que se conectarán con la malla de puesta a tierra mediante soldadura exotérmica. Se deberá garantizar la continuidad de la conexión entre el sistema de apantallamiento y el sistema de puesta a tierra de la Subestación.

Las estructuras no conductoras y edificios requerirán un sistema completo de protección contra descargas atmosféricas, incluyendo puntas captadoras, conductores bajantes y varillas de puesta a tierra. En general los materiales e instalación del RETIE (artículo 16°), la Norma IEEE Std. 998, la Norma NTC-4552-1-2-3 y la Norma IEC-62305-2, en su última versión.

5.6 Equipos de control y protección

Las siguientes son las características principales que deberán cumplir los equipos de control y protección:

5.6.1 Sistemas de protección

Las instalaciones deben cumplir con los lineamientos para equipos de protección definidos en la reglamentación vigente, los acuerdos y esquemas normalizados de protecciones del CNO. Específicamente para los sistemas de protección se requiere, según aplique:

- Para el transformador de conexión se requiere un sistema de protección redundante mediante dos sistemas de protección, que considera protecciones principales multifuncionales de diferente fabricante, con doble protección diferencial larga de transformadores y que no compartan modos comunes de falla. Cada relé de protección diferencial deberá contar con funciones de distancia y sobrecorriente de tiempo definido e inversas en cada bahía.
- Para el punto de conexión, la protección de falla interruptor debe implementarse en relé independiente o integrado a la protección diferencial de barra.
 Para los equipos de medida: transformadores de corriente y tensión, se deben de disponer
 - Para los equipos de medida: transformadores de corriente y tensión, se deben de disponer de núcleos secundarios independientes para conectar cada relé y las funciones de tipo diferencial deberán tener núcleo dedicado de medida de corriente.
 - Los transformadores de corriente deben ser diseñados para que no se presenten condiciones de saturación para la actual y futura.

Así mismo, los sistemas de servicios auxiliares deberán ser redundantes, independientes y supervisados de tal forma que el equipo continúe su operación durante fallas de la conexión principal.

Los equipos de protección deberán cumplir con las partes pertinentes establecidas en la publicación IEC 60255 "Electrical relays", en la IEC 60870 "Telecontrol equipments and systems" y en el caso de los registradores de falla, los archivos de datos deberán utilizar el formato COMTRADE (Common Format for Transient Data Exchange), recomendación IEEE C37.111 o en su defecto, el Inversionista deberá proveer el software que realice la transcripción del formato del registrador de fallas al formato COMTRADE, o cumplir con las respectivas normas equivalentes ANSI.

Página 47 de 59

El esquema de protección de Líneas deberá ser implementado con dos protecciones principales para Líneas de transmisión, en lo posible con principio de operación (diferente algoritmo de cálculo) o diferente fabricante y medición diferente, garantizando la compatibilidad con las protecciones existentes en los extremos de la línea San Carlos - Esmeralda 230 kV a reconfigurar. El esquema completo deberá consistir en relés rápidos para emisión y recepción del disparo directo transferido; falla interruptor; funciones de recierre y verificación de sincronismo, protección de sobretensión; supervisión del circuito de disparo y registro de fallas. La protección de Línea debe dar disparo monopolar y tripolar e iniciar el ciclo de recierre. Para el caso de Fibra Óptica dedicada como medio de comunicación para la PPL1 y Fibra Óptica dedicada como medio de comunicación para la PPL2, se entiende como medio de comunicación para la PPL1, un cable diferente al del medio de comunicación para la PPL2. Para el caso de Fibra Óptica dedicada como medio de comunicación para el relé o función de protección distancia ANSI 21/21N, el esquema de comunicación se debe implementar con equipos digitales de teleprotección conectados directamente a la fibra óptica. Para el caso de Fibra Óptica multiplexada se entiende como medio de comunicación para la PPL2, un enlace (trayectoria) independiente del medio de comunicación para la PPL1. Para el caso de Fibra Óptica multiplexada, el canal de comunicación no deberá de exceder una asimetría de canal de 5 ms y retardo máximo de 16 ms. Si el medio de comunicación para la protección diferencial de Línea ANSI 87L es multiplexado, éste deberá de ser único y dedicado".

En cualquier caso, el esquema de protección de las nuevas Líneas debe ser redundante y definirse considerando el SIR (Source Impedance Ratio), de acuerdo con la metodología de la norma IEEE Std. C37.113 en su última versión. En caso de que se obtenga un SIR mayor a 4, será necesario considerar un esquema de protección totalmente selectivo, según la definición de dicha norma. También deberá garantizar la redundancia de los sistemas y canales de comunicación asociados con las Líneas de transmisión objeto de esta Convocatoria, utilizando sistemas de comunicación que usen diferentes medios o tecnologías de envío y recepción de señales de teleprotección en ambos extremos de las Líneas.

Para subestaciones nuevas que lo requieran, el Sistema de Protecciones -SP- para las barras (diferencial de barras) deberá ser redundante con principio de operación diferente (diferente algoritmo de cálculo) o diferente fabricante. Adicionalmente deberán seleccionarse de acuerdo con la configuración de la Subestación. La alimentación DC de cada sistema de protección debe ser independiente; las señales de corriente deben ser tomadas, para cada SP, desde núcleos diferentes de los CT's y cada SP de manera independiente, debe tener la posibilidad de comandar disparo a ambas bobinas de los interruptores. Los SP diferenciales de barra, deben ser seleccionados considerando las bahías a construirse objeto de la presente Convocatoria y las ampliaciones futuras que se instalarán en los espacios de reserva, y deberán permitir la conexión de CT's con diferentes relaciones de transformación. El Inversionista deberá implementar protección diferencial de barras multizona y de fase segregada para las subestaciones nuevas.

Las bahías deberán estar acopladas al esquema de protección diferencial de barras de la Subestación, que deberá ser un sistema de protección diferencial distribuido que permita el mantenimiento de cada unidad individualmente con la protección en operación continua.

Página 48 de 59

Los relés de protección, y registradores de fallas deberán ser de estado sólido, de tecnología numérica o digital. Los relés de protección, y los registradores de fallas deben incorporar dispositivos de prueba que permitan aislar completamente los equipos de los transformadores de medida de los circuitos de disparo, polaridades y del arranque de la protección por falla en interruptor, de tal manera que no se afecte ningún otro equipo de forma automática sin tener que hacer puentes externos. Los equipos deberán contar con todos los módulos, tarjetas y elementos que sean necesarios para las labores de búsqueda de fallas paramétricas de los relés de protección y registradores de fallas.

El Interventor verificará e informará a la UPME el cumplimiento de requisitos de las protecciones según lo solicitado en este Anexo No. 1 y en la Resolución CREG 025 de 1995, Anexo No. CC4 y sus modificaciones.

5.6.2 Sistema de automatización y control de la subestaciones

La arquitectura del sistema de automatización estará constituida por los subsistemas y equipos que conforman los niveles 0, 1, 2 y 3 según la siguiente arquitectura:

Nivel	Descripción	Modos de Operación
	Corresponde a los sistemas remotos de información.	Es la facilidad que debe tener el sistema para ser telecomandado y supervisado desde el centro de control remoto de acuerdo con las normas del CND.
3	Comunicaciones e interfaces entre niveles 2 y 3. Proporciona la comunicación entre el Sistema de Automatización y los sistemas remotos de información.	La captura de datos y la transmisión de información hacia y desde el sistema remoto deben ser independientes de la IHM de las Subestaciones. Debe ser independiente de cualquier falla en las interfaces de usuario IHM.
2	Corresponde al sistema de procesamiento del Sistema de Automatización, controladores de Subestación, almacenamiento de datos y el IHM, localizados en la sala de control de la Subestación. El sistema de procesamiento del nivel 2 procesa la información de la Subestación para que pueda ser utilizada por el IHM del nivel 2 y pueda ser almacenada para operación, análisis futuros, mantenimiento y generación de reportes. Comunicaciones e Interfaces Nivel 2 y	Corresponde al mando desde las estaciones de operación localizadas en la Subestación. Este es el modo de operación normal para la Subestación atendida. En el IHM se deberán tener despliegues gráficos que muestren en forma dinámica las condiciones de los enclavamientos para cada tipo de maniobra.
	Nivel 1.	

Página **49** de **59**

	Corresponde a la red de área local de la Subestación, la cual permite la comunicación entre los equipos de nivel 2, los controladores de Subestación, de bahía y otros IEDs de nivel 1.	
1	Controladores de bahía, que se encargan de la adquisición de datos, cálculos, acciones de control y procesamiento de la información relacionada con los dispositivos en cada campo y sistema de servicios auxiliares de la Subestación. A través del panel frontal de cada controlador de bahía, se debe proporcionar un nivel básico de acceso al Personal de operación para la supervisión y control de los equipos de campo asociados al controlador	Para el equipo de alta tensión y los servicios auxiliares, los modos corresponden al mando de los equipos de maniobra desde el controlador de bahía a través del panel frontal. Para subestaciones de tipo convencional, se deberá prever la utilización de casetas de patio o gabinetes de patio.
•	respectivo. Comunicaciones e interfaces Nivel 1 y 0. Corresponde a la comunicación entre los controladores de bahía, los IEDs y al cableado convencional de las señales individuales de entrada y salida asociadas con los equipos de potencia en el patio de la Subestación. Deberá haber integración de las protecciones con el Sistema de Automatización.	gaso. as pane.
0	Conformado por los equipos de patio (interruptores, seccionadores, transformadores de potencia y de instrumentación, reactores, bancos de capacitores, etc.), por los servicios auxiliares de la Subestación (208/120 Vca, 125 Vcc, grupos electrógenos, inversores, cargadores, equipos, etc.), por los IEDs tales como relés de protección, medidores multifuncionales, registradores de fallas,	Corresponde al mando directamente desde las cajas de mando de los interruptores y seccionadores en el conjunto de equipos de potencia de las Subestaciones y para los servicios auxiliares desde sus propios gabinetes. Los medidores multifuncionales deben cumplir todos los requisitos técnicos avisidos para la Desalvajón.
	equipos de monitoreo, cajas de mando de equipos de maniobra y demás.	técnicos exigidos por la Resolución CREG 025 de 1995, en su última revisión, especialmente lo referente al Código de Medida y sus anexos.

5.6.2.1 Características generales

Todos los equipos del sistema de automatización deberán cumplir con la norma IEC.

Página **50** de **59**

3 4 5

El Transmisor garantizará que la arquitectura del Sistema de Automatización permita la ampliación a medida que se incremente el número de bahías en la Subestación y que, sin cambios fundamentales en su arquitectura, permita cambios en la funcionalidad, hardware y software; también garantizará que el sistema interopere (capacidad de intercambiar y compartir recursos de información) con IEDs de diversos fabricantes, razón por la cual deberán utilizarse protocolos abiertos. El Transmisor garantizará igualmente, que el Sistema de Control ofrezca una respuesta abierta y modular a las necesidades de protecciones, automatismos, control y monitoreo de la Subestación. Copia de toda la información relacionada con la arquitectura del Sistema de Automatización y con el Sistema de Control, deberá ser entregada por el Transmisor al Interventor para la verificación de cumplimiento.

Se entiende que todos los elementos auxiliares, equipos y servicios necesarios para la correcta operación y mantenimiento del sistema de control serán suministrados, sin limitarse al: hardware, software, GPS, programas para el IHM, trabajos de parametrización del sistema, etc.

La arquitectura del sistema de control deberá estar basada en una red redundante a la cual se conectan los equipos que soportan las funciones de automatismo, monitoreo, protección y control. Se destacan las siguientes funciones:

- Las redes de comunicación entre los controladores de bahía deberán ser de protocolo, que resulte compatible con las comunicaciones existentes.
- La arquitectura del sistema estará compuesta de equipos, que deben permitir:
 - Optimización de la integración funcional a través de intercambios rápidos entre equipos vía la red
 - Integrar los equipos de otros fabricantes con el Sistema de control y Automatización de la Subestación.
- La herramienta de gestión del sistema debe permitir por lo menos las siguientes funciones:
 - Gestión de las bases de datos del sistema.
 - Permitir la integración de elementos futuros.
 - Implementación de herramientas de seguridad y administración.
 - Gestión del modo de funcionamiento de los equipos permitiendo la explotación normal, el mantenimiento y/o paro de cada elemento del sistema sin perturbar ni detener el sistema.
 - Mantenimiento de cada equipo.
 - Gestión de protecciones que permite verificar y dar parámetros a las protecciones del sistema.

Los IED de protección, los controladores de bahía, los controladores de Subestación y/o computadores del IHM deberán permitir la transmisión de información entre la Subestación y el CND o el centro de control remoto del Inversionista (sean funciones de control, visualización o de mantenimiento). El Inversionista es responsable por utilizar los protocolos de comunicación que el CND le exija y en general, todos los costos de implementación y coordinación de información a intercambiar con el CND son responsabilidad del Inversionista.

Las funcionalidades siguientes deben ser garantizadas por los controladores de Subestación:

Página **51** de **59**

Transmisión de comandos del centro de control remoto hacia los equipos de la 2 Subestación.

1

3

4

5

6

7

8 9

10

11 12

13

14 15

16 17

18

19

20

21 22

23

24 25

26

27

28

29 30

31

32

33

34

35

36 37

38 39

40

41

42

43

44

45

- Sincronización satelital de todos los equipos de los sistemas de control, protecciones y registro de fallas de la Subestación a través de una señal de sincronización proveniente de un reloi GPS.
- Recuperación de información proveniente de los equipos hacia el centro de control remoto (mediciones, alarmas, cambios de estado, etc.).

Los equipos a instalar deben ser compatibles con los controladores de Subestación para el correcto envío de información hacia centros de control externos, CND y recibir los comandos aplicables enviados desde dichos centros. En este aspecto, el Inversionista será el único responsable de suministrar y hacer operativos los protocolos de comunicaciones necesarios para integrar la Subestación con el CND.

5.6.3 Unidad de medición fasorial sincronizada - medidores multifuncionales

En subestaciones nuevas deben instalar unidades de medición fasorial -PMU- para cada bahía (Línea, transformación o compensación, etc.) objeto de la presente Convocatoria, y en configuración interruptor y medio se deberá garantizar un PMU por corte, incluyendo el corte central. Deberá tener entradas de corriente independiente por bahía o corte instalado.

Estos equipos tomarán las señales de tensión y corriente de los núcleos de medida (circuitos de instrumentación). La unidad de medición fasorial podrá ser implementada en un equipo multifuncional, siempre y cuando este no comparta funciones de protección o circuitos de protección. La implementación podrá realizarse con equipos que integren sincronización, digitalización y procesamiento en un mismo dispositivo, o con unidades procesadoras centralizadas y periféricos distribuidos. En el caso de que la Subestación no cuente con casetas en el patio, las PMUs deberán instalarse en los tableros de las correspondientes bahías.

Deberá existir un tablero independiente para concentrar la información sincrofasorial, en donde el operador nacional instalará un concentrador de datos fasoriales -PDC- y otros dispositivos asociados. El tablero suministrado por el Inversionista deberá estar provisto de servicios de energía con las mismas características de los tableros de control de la Subestación. El Inversionista deberá permitir al operador nacional las labores de gestión y mantenimiento de los equipos instalados en este tablero.

La comunicación entre las PMU y el PDC será provistas y mantenidas por el Inversionista, a través de una red de comunicación redundante local y deberá permitir el intercambio de información con la red del sistema de control a través de los mecanismos de seguridad apropiados. Esta red deberá ser independiente de la red de gestión de protecciones, pues sobre la primera el operador nacional deberá poder tener acceso remoto para gestionar las PMU. La comunicación desde la Subestación (o desde el PDC) hacia el sistema que disponga el operador nacional, será responsabilidad de este último, según lo establecido en la resolución CREG 080 de 1999.

Página **52** de **59**

Las unidades de medición fasorial sincronizada deben cumplir con el estándar más reciente IEEE C37.118 o aquel que lo reemplace en el momento de su adquisición. Estos equipos deberán contar con la capacidad de ser actualizados cuando la norma IEEE de medición fasorial sea revisada.

Los medidores multifuncionales deben tomar sus señales de los transformadores de medida, para determinación de parámetros eléctricos tales como: tensión, corriente, potencia activa, potencia reactiva, energía activa, factor de potencia y frecuencia. Deben contar con emisor de impulsos o un sistema de registro comunicado con niveles superiores. Deben cumplir con todos los requisitos técnicos exigidos por la Resolución CREG 025 de 1995, en su última revisión, especialmente lo referente al Código de Medida y sus Anexos.

5.6.4 Controladores de Bahía

Los controladores de bahía son los encargados de recibir, procesar e intercambiar información con otros equipos de la red, deben ser multifuncionales y programables. Los controladores de bahía deben ser compatibles con los estándares EMC y aptos para aplicación en subestaciones eléctricas de alta y extra alta tensión; el Inversionista deberá presentar al Interventor los certificados de pruebas que lo avalen.

A partir de entradas/salidas, el equipo podrá manejar la lógica de enclavamientos y automatismos de la bahía, por lo que en caso necesario deben tener capacidad de ampliación de las cantidades de entradas y salidas instaladas en el equipo para cubrir los requerimientos de la bahía que controlan. Los controladores de bahía deben contar con un diagrama mímico amplio en LCD que permitirá las siguientes funcionalidades como mínimo:

- Despliegue del diagrama mímico de la bahía que muestre la información del proceso.
- Despliegue de alarmas.
- Despliegue de eventos.
- Despliegue de medidas de proceso de la bahía.
- Control local (Nivel 1) de los equipos que forman parte de la bahía.
- Manejo de la posición del control de la bahía (Local / Remoto) mediante botones de función.
- Despliegue del estado de las tarjetas que forman parte del equipo.

Deben también tener LEDs de anuncio de alarma configurables. Deben contar con puertos para la comunicación.

Estos equipos también deberán ser capaces de recibir una señal de sincronización horaria para hacer el estampado de tiempo al momento de recibir un evento.

5.6.5 Controlador de los Servicios Auxiliares

Debe ser diseñado, probado y ampliamente utilizado en subestaciones de alta tensión. Debe permitir la medida, supervisión y control de los servicios auxiliares del Proyecto y contar con los mismos protocolos del controlador de bahía.

Debe preparar y enviar la información asociada con los servicios auxiliares a la interfaz IHM y a los niveles superiores. Debe integrarse al sistema de control de la Subestación y estar sincronizados con todos los dispositivos de la Subestación. El controlador de servicios auxiliares debe contar con un mímico amplio en LCD que permitirá las siguientes funcionalidades como mínimo:

5 6 7

8

10

1

3

4

- Despliegue del diagrama mímico de la bahía.
- Despliegue de alarmas.
- 9 Despliegue de eventos.
 - Despliegue de medidas de tensión y de corriente.
- Manejo de la posición del control de la bahía (Local / Remoto) mediante botones de función.
 - Despliegue del estado de las tarjetas que forman parte del equipo.

12 13 14

Deben también tener LEDs de anuncio de alarma configurables. Deben contar con puertos para la comunicación.

15 16 17

5.6.6 Switches

18 19

Los switches o concentradores de datos de la red de control deberán ser adecuados para operar en ambientes industriales y cumplir sin limitarse a ello, con los siguientes requisitos:

20 21 22

23

24

25

26

27

28

29

30

- Deberán cumplir con IEEE 1613 standard "error free" networking device.
- Deberán cumplir con IEC 61850-3 standard for networks in substations.
- Deberá incluir las siguientes características de red:
 - IEEE 802.1d, message prioritization y rapid spanning tree en MAC Bridges
 - IEEE 802.1q VLAN
- Deberán tener funciones de administración SNMP v2 y RMON.
- Deberán soportar las condiciones de estabilidad bajo las condiciones de prueba descritas en las normas IEC 60068-2-6 e IEC 60068-2-27.
- En caso de alguna discrepancia en las normas antes mencionadas, prevalecerá la más exigente.

31 32 33

Los switches suministrados deberán contar con el número de puertos suficientes para conectar todos los equipos de las redes, tanto los equipos de control, como los de protección y medida.

5.6.7 Interfaz Nivel 2 - Nivel 1

38 39 Para la interconexión de los equipos se requieren comunicaciones digitales, así:

40 41

42

43

La red local de comunicaciones para control y supervisión de la Subestación se debe conformar para que sea inmune electromagnéticamente, que posea suficiente rigidez mecánica para ser tendido en la Subestación, con protección no metálica contra roedores, con chaqueta retardante a la llama, con conectores, marquillas, terminales, amarres y demás accesorios de conexión, según diseño detallado a cargo del Inversionista.

44 45

Página **54** de **59**

La red debe incluir todos los transductores, convertidores, amplificadores y demás accesorios requeridos para la adecuada conexión y comunicación de todos los equipos distribuidos en la Subestación.

La comunicación de todos los equipos como controladores de bahía, IEDs, registradores de eventos con el controlador de la Subestación debe ser redundante y con autodiagnóstico en caso de interrupción de una cualquiera de las vías.

5.6.8 Equipos y Sistemas de Nivel 2

5.6.8.1 Controlador de la Subestación

Es un computador industrial, de última tecnología, robusto, apto para las condiciones del sitio de instalación, programable, que adquiere toda la información para supervisión y control de la Subestación proveniente de los dispositivos electrónicos inteligentes, la procesa, la evalúa, la combina de manera lógica, le etiqueta tiempos, la almacena y la entrega al CND, de acuerdo con la programación realizada en ella y al sistema de supervisión de la Subestación o a otros IED's que dependen de ella. La información requerida para realizar la supervisión remota se enviará por enlaces de comunicaciones.

Adicionalmente el controlador de la subestación debe centralizar información de los relés de protección, los registradores de fallas y los medidores multifuncionales, conformando la red de ingeniería de la Subestación, la cual debe permitir acceso local y remoto para interrogación, configuración y descarga de información de los relés, de los registradores de fallas y los medidores multifuncionales. Deben suministrarse todos los equipos, accesorios, programas y bases de datos requeridos para implementar un sistema de gestión de protecciones y registradores de fallas para la Subestación.

5.6.8.2 Registradores de fallas

Los registradores de falla deberán programarse de manera que al ocurrir una falla, la descarga del archivo con los datos de la falla, se realice automáticamente a un equipo de adquisición, procesamiento y análisis, en el cual se realizará la gestión de los registros de falla provenientes de equipos instalados en las bahías del Proyecto, incluyendo almacenamiento, despliegue, programación e interrogación remota, cumpliendo con lo establecido en el Código de Redes CREG 025 de 1995, en su última revisión.

5.6.8.3 Interfaz Hombre - Máquina IHM de la subestación

El sistema de supervisión local debe efectuar el monitoreo y control del proceso a través de una IHM conformada básicamente por computadores industriales y software tipo SCADA. Las pantallas o monitores de IHM deben ser suficientemente amplias para mostrar la información del proceso.

Toda la información, se debe desplegar, almacenar, filtrar, imprimir en los mismos dispositivos suministrados con el sistema de medida, control y supervisión de la Subestación, la cual debe tener como mínimo las siguientes funciones:

4

7

- Adquisición de datos y asignación de comandos.
- Autoverificación y autodiagnóstico.
 - Comunicación con el CND.
- 8 Comunicación con la red de área local.
- 9 Facilidades de mantenimiento.
- Facilidades para entrenamiento.
- 11 Función de bloqueo.
- Función de supervisión.
- Funciones del Controlador de Subestación a través del IHM.
- Guía de operación.
- 15 Manejo de alarmas.
- Manejo de curvas de tendencias.
- Manejo de mensajes y consignas de operación.
- Marcación de eventos y alarmas.
- Operación de los equipos.
- Programación, parametrización y actualización.
- Reportes de operación.
- Representación visual del proceso mediante despliegues de los equipos de la Subestación,
 incluidos los servicios auxiliares y las redes de comunicaciones.
- Secuencia de eventos.
- 25 Secuencias automáticas.
- Selección de los modos de operación, local, remoto y enclavamientos de operación.
 - Supervisión de la red de área local.

27 28 29

5.6.9 Requisitos de Telecomunicaciones

30 31

Son los indicados en el Anexo CC3 del Código de Conexión, resolución CREG 025 de 1995, en su última revisión.

32 33 34

5.7 Obras Civiles

35 36

Estará a cargo del Inversionista la construcción de las obras descritas en el numeral 2 del presente Anexo No. 1, con el siguiente alcance:

37 38 39

40

41

42

43

- Diseño y construcción de todas las obras civiles incluyendo, entre otras, la construcción o mejora de las vías de acceso y la construcción o ampliación del edificio de control.
- Todas las actividades relacionadas con la gestión ambiental deben cumplir con los requerimientos establecidos en el Plan de Manejo Ambiental (PMA) del Proyecto, el cual también está a cargo del Transmisor.
- Todos los diseños de las obras civiles deben cumplir con los requisitos establecidos en las
 Normas Colombianas de Diseño y Construcción Sismo Resistente NSR-10.

Página 56 de 59

El Interventor conceptuará para la UPME y hará seguimiento al cumplimiento de los aspectos regulatorios, el RETIE y las normas legales aplicables a los diseños para construcción de las obras civiles. Únicamente se podrá realizar obra civil con base en planos de construcción previamente aprobados. El Interventor informará a la UPME y hará el seguimiento correspondiente al cumplimiento de las normas técnicas. El Transmisor deberá presentarle al Interventor la siguiente información:

- Memorias de cálculo que soporten los diseños.
- Planos de construcción completamente claros, con secciones, detalles completos, listas y especificaciones de los materiales para la ejecución de las obras.
- Una vez finalizadas las obras debe actualizarse los planos de construcción y editarse la versión denominada "tal como construido" que incluye las modificaciones hechas en campo verificadas por el Interventor.

5.8 Malla de Puesta a Tierra y Apantallamiento

 En los edificios a cargo del Inversionista o en las adecuaciones a lo existente, se deberá diseñar, suministrar e instalar todos los elementos necesarios para la instalación de puntas tipo Franklin, suministrar e instalar todos los elementos necesarios para la construcción de la red de puesta a tierra del apantallamiento electromagnético tales como bajantes, platinas de cobre, varillas de puesta a tierra y redes de tierra.

Los diseños y la instalación son responsabilidad del Inversionista. La malla de puesta a tierra del proyecto debe ser en cable de cobre suave, electrolítico, desnudo, recocido, sin estañar, trenzado en capas concéntricas. La malla de tierra deberá ser diseñada siguiendo los lineamientos de la norma ANSI/IEEE Std 80 y Std 81 tal que garanticen la seguridad del Personal, limitando las tensiones de toque y paso a valores tolerables. Adicionalmente, tanto la malla de puesta a tierra como el sistema de apantallamiento deberán cumplir con los requerimientos técnicos de diseño e implementación, que le apliquen, según los artículos 15° y 16° del RETIE, respectivamente, en especial en cuanto a materiales e interconexión.

6 ESPECIFICACIONES PARA LA PUESTA EN SERVICIO DEL PROYECTO

6.1 Pruebas y puesta en servicio

 Todos los equipos suministrados y montados deben ser sometidos a pruebas de campo tanto de aceptación para recepción, como individuales, funcionales, de puesta en servicio y de energización de acuerdo con lo especificado por los fabricantes, la normatividad CREG vigente, los requisitos del CND y los acuerdos del CNO, en particular el Acuerdo 1937 de 2025 o aquel que lo sustituya o reemplace.

Los registros de todas las pruebas (aceptación para recepción, individuales, funcionales, de puesta en servicio y de energización) se consignarán en "Protocolos de Pruebas" diseñados por el Transmisor de tal forma que la Interventoría, pueda verificar el cumplimiento de los requisitos de la Regulación vigente y de las normas técnicas; por ejemplo: que se cumplen los

Página **57** de **59**

enclavamientos y secuencias de operación tanto de alta tensión como de servicios auxiliares, que los sistemas de protección y control cumplen con la filosofía de operación en cuanto a polaridades, acciones de protecciones y demás.

3 4 5

6

1

2

Pruebas de puesta en servicio: El Transmisor debe efectuar las siguientes pruebas como mínimo, pero sin limitarse a estas y cumpliendo con el Código de Redes y los requerimientos del CND, vigentes:

7 8 9

- Direccionalidad de las protecciones de Línea.
- Medición y obtención de los parámetros y las impedancias de secuencia de las Líneas asociadas.
 - Fallas simuladas monofásicas, trifásicas, cierre en falla con el fin de verificar el correcto funcionamiento de las protecciones, registro de fallas, telecomunicaciones, gestión de protecciones.
 - Pruebas de conexión punto a punto con el CND.

15 16 17

18

12

13 14

Pruebas de energización: El Transmisor será responsable por la ejecución de las pruebas de energización. Los Protocolos de las pruebas de energización deben ser verificados para los fines pertinentes por la Interventoría.

19 20 21

6.2 Información requerida por CND para la puesta en servicio

22 23 24

La información requerida por CND para la puesta en servicio del Proyecto es la siguiente:

25 26

- Presentación del Proyecto al CND.
- Formatos con información técnica preliminar para la realización de estudios.
- Diagrama Unifilar.
- Estudio de ajuste y coordinación de protecciones de los equipos y el área de influencia del
 Proyecto. El área de influencia definida para el estudio de ajuste y coordinación de
 protecciones, de este proyecto, deberá ser acordada con el CND.
- Lista disponible de señales de SCADA y requerimiento de comunicaciones.
- Cronograma de desconexiones y consignaciones.
- Cronograma de pruebas.
- Protocolo y formatos para la declaración de los parámetros del equipo y sus bahías con información definitiva.
- Protocolo de energización.
- Inscripción como agente y de la frontera comercial ante el ASIC.
- Certificación de cumplimiento de código de conexión otorgado por el propietario del punto de conexión.
 - Carta de declaración en operación comercial.
- Formatos de Información técnica. Los formatos son corrientemente elaborados y actualizados por el CND.

43 44

7 ESPECIFICACIONES DE OPERACIÓN

Según el Código de Operación del SIN (Resolución CREG 025 de 1995 y sus actualizaciones) y otra regulación de la CREG que sea aplicable.

8 INFORMACIÓN DETALLADA PARA EL PLANEAMIENTO

Antes de que termine el Contrato de Interventoría, el Transmisor debe entregar al Interventor un documento con la información detallada para el planeamiento, según lo requiere el Código de Planeamiento en sus apéndices, para que éste se la entregue a la UPME.

9 INFORMACIÓN ESPECÍFICA

 Información específica referente a la Convocatoria Pública, recopilada por la UPME, como Costos de Conexión, datos técnicos y planos, etc., serán suministrados por la UPME en formato digital en lo posible a través de su Página Electrónica junto con los presentes DSI o a solicitud de los Interesados, mediante carta firmada por el Representante Legal o el Representante Autorizado, indicando domicilio, teléfono, fax y correo electrónico. Dicha información deberá ser tomada por los Inversionistas como de referencia; mayores detalles requeridos será su responsabilidad consultarlos e investigarlos.

10 FIGURAS

La siguiente es la lista de figuras referenciadas en este documento:

Anexo 1.1. - Figura 1 - Diagrama Esquemático del Proyecto.

Anexo 1.2. - Figura 2 - Diagrama Unifilar Subestación Corrientes 230 kV.