

Balance de Energía Útil 2015

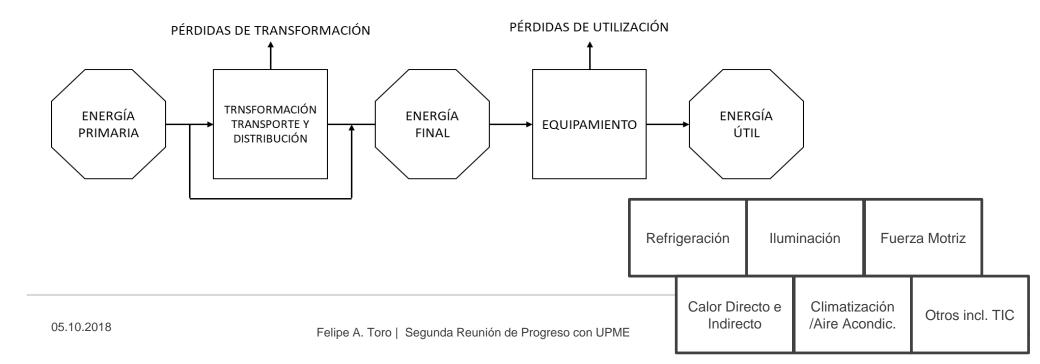
Primer balance de Energía Útil para Colombia y cuantificación de las pérdidas energéticas relacionadas y la brecha de eficiencia energética

Abril 3 de 2019, Bogotá

Programa

8:00 - 8:20	Bienvenida
8:20 - 8:40	Método y Herramienta
8:40 - 9:10	BEU Resultados Totales
9:10 - 9:30	Discusión/Café
9:30 - 9:50	BEU Transporte
9:50 - 10:00	Discusión
10:00 - 10:20	BEU Industria
10:20 - 10:30	Discusión
10:30 - 11:00	BEU Residencial/Terciario
11:00 - 11:10	Discusión
11:10 - 11:30	BEU Hidrocarburos
11:30 - 11:40	Discusión
11:40 - 12:00	Cierre

Método y Herramienta



Definiciones de Energía útil:

Definición Energía ùtil:

- 1. D1: La energía útil producida tras la última transformación, también es llamada Energía Intermedia, ya que, su aprovechamiento total depende de la eficiencia de otros procesos (IEA y EUROSTAT).
 - D2: la energía útil es definida como la **energía disponible a los consumidores finales** después de la última conversión realizada por parte de los equipos que consumen energía, es decir la energía final menos las pérdidas de conversión (Pardo et al., 2012, Häfele 1977)

D3: una primera aproximación al cálculo de energía útil sería igual al **producto de la energía final** y la eficiencia de los equipos usados en el consumo final en cada sector (Olade. BID, 2017)

Balance de Energía útil

Es un **modelo** que permite procesar la información sectorial y subsectorial del balance energético nacional para obtener estimaciones de la energía final destinada a **cada uno de los usos** definidos en cada sector: Fuerza motriz, calor directo, calor de proceso, refrigeración, iluminación y otros usos informáticos y electrónicos.

Luego con base en los **factores de eficiencia** del primer proceso de transformación energética, estima la energía útil en cada uso.

La energía útil se calcula considerando los usos para cada una de las **formas de energía** (energéticos del balance).

Este modelo amplia de esta forma la utilidad del **BECO** agregando información sobre lo que sucede después de entregada la energía final.

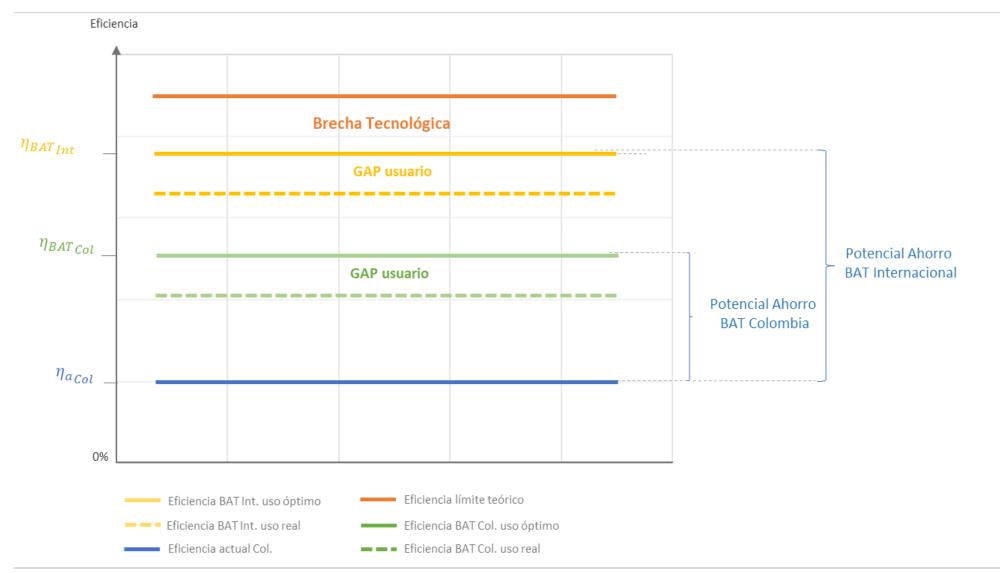
Definiciones de Pérdidas (Metodología E2 y E3) :

También se desarrolla dentro del modelo un módulo para estimar el **potencial de ahorro** de energía con el mismo nivel de desagregación del BEU. Dentro de este modulo se consideran factores de eficiencia de referencia (las mejores tecnologías de conversión por cada uso disponibles en el mercado, local o internacional).

La energía final esta compuesta por dos fracciones:

- ✓ la energía útil y
- ✓ la energía perdida

y esta última se compone por otras dos:


- ✓ la energía recuperable (potencial de ahorro de energía) y
- ✓ la energía no recuperable (no disponible por leyes de la termodinámica o no alcanzable con tecnologías actuales).

Definiciones de Potencial de Ahorro (E8):

Ejemplos de eficiencias asumidas para vehiculos

Eficiencia actual

		km/gal o km/m3	kJ/km	Fuente
Nacional	Diésel	52	2.798	Gasolina*1,3
	Gasolina	40	3.042	Econometría (2010)
	Gas natural	13	2.865	Behrentz (2014)

Eficiencia de Referencia

			km/gal o km/m3	kJ/km	Fuente	
	Automóvil	Diésel	78	1.863	UTP (2017)	
		Gasolina	60	2.025		
		Gas natural	24	1.549		

Eficiencia BAT (Eléctrico e Híbrido)

	kJ/km
Automóvil	750

. <u>.</u>		kJ/km
Automóvil	Diésel	969
	Gasolina	1.427
	Gas natural	1.493

Método general de BEU:

BECO

Balance de Energía Final por uso

ηα

Matriz de factores

de eficiencia

promedio actual del

sector por uso

BEU

Balance de energía útil del sector por uso

BECO

Balance de Energía Final por uso

 ηBAT

Matriz de factores de eficiencia BAT del sector por uso

BEU_{BAT}
Balance de energía
útil con los equipos
más eficientes del
sector por uso

Balance de Energía Final por uso

 $1 - \left(\frac{\eta a}{\eta BAT}\right)$ Matriz de factores con relación de eficiencias (actual/BAT)

Matriz de potencial comercial (potencial de ahorro) del sector por uso

Herramienta BEU para Transporte

Datos de consumo

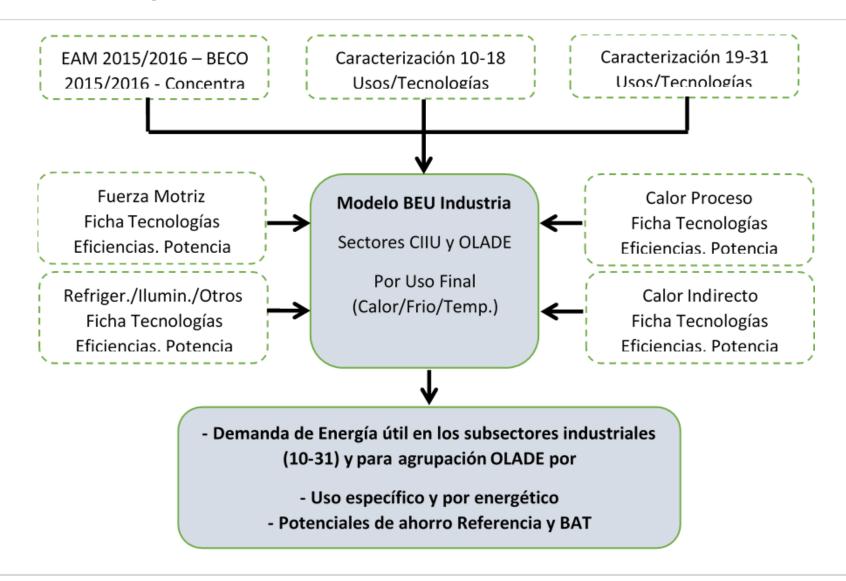
UPME, SICOM y ECONOMETRÍA Eficiencias

Establecimiento de línea base para la economía de combustibles de los vehículos ligeros en Colombia,

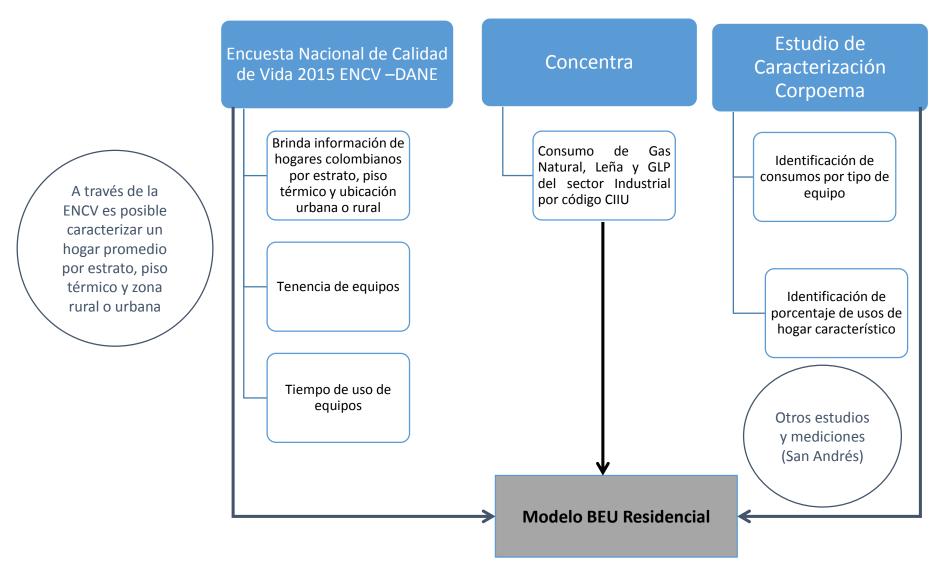
elaborado por la Universidad Tecnológica de Pereira.

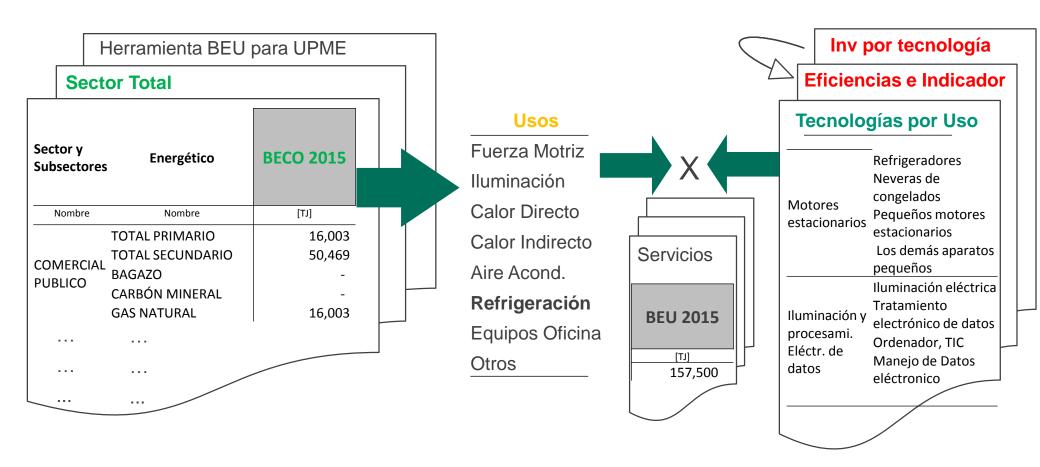
Trabajo de referencia de caracterización del Sector Transporte

Estudios de movilidad principales ciudades

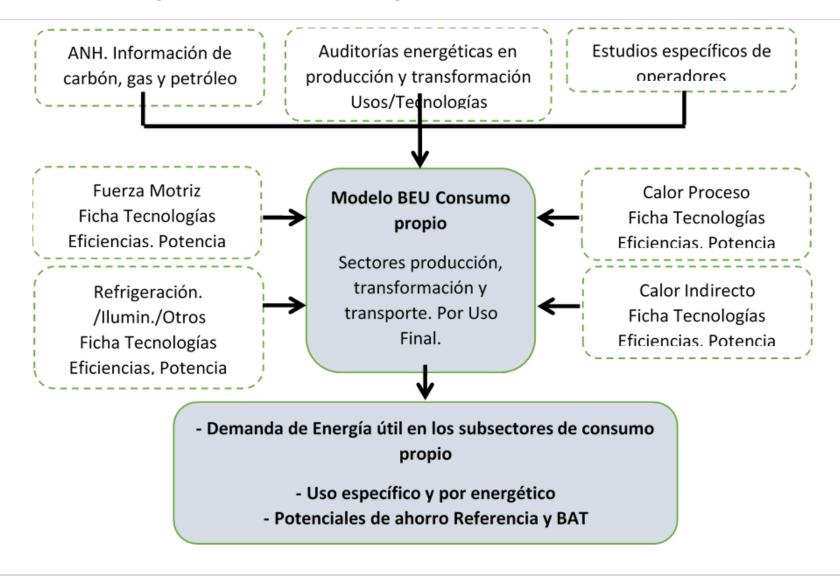

Modelo BEU Transporte

Herramienta BEU para Industria

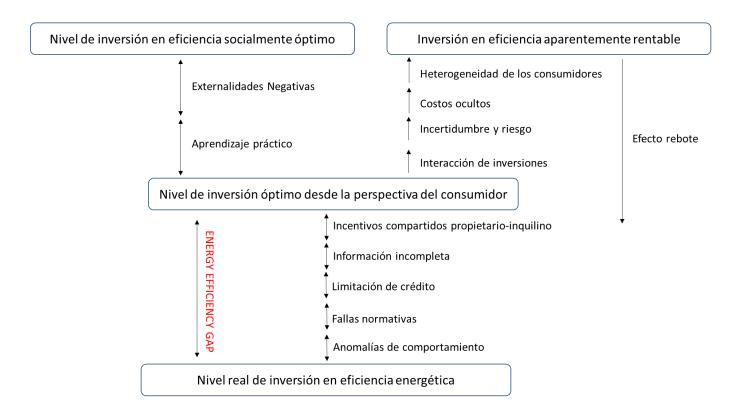

Herramienta BEU para Residencial



Herramienta BEU para Residencial


Herramienta BEU para Servicios

Herramienta BEU para Consumo Propio

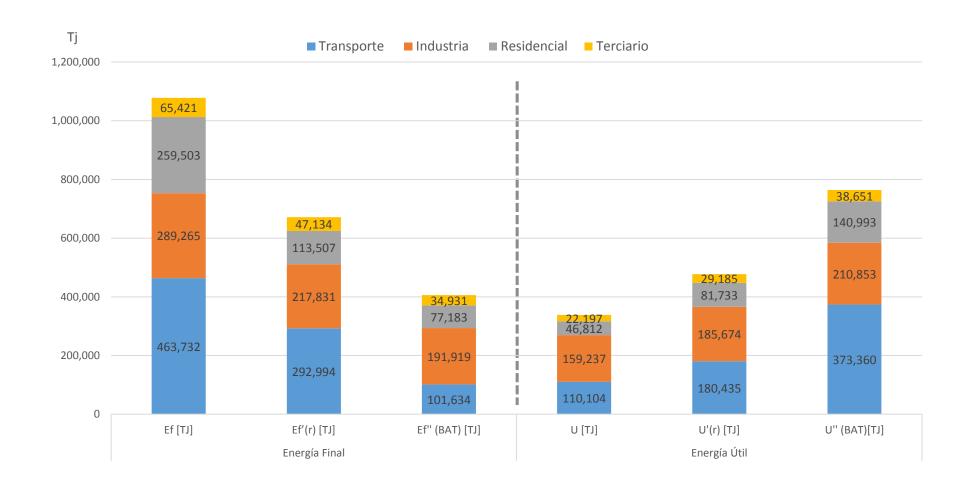


La Brecha de eficiencia energética.

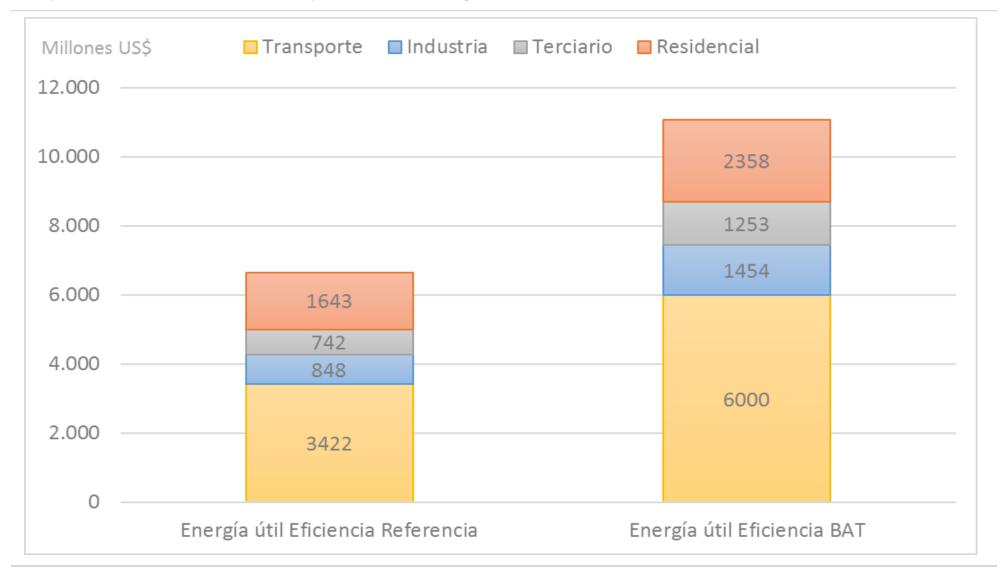
 Entrevistas con representantes de diferentes sectores son realizadas para entender las principales motores y barreras con respecto a la brecha de eficiencia energética.

Verificacion de la infomación e incertidumbres

Criterio para la verificación de fuentes	Descripción
Relevancia y Cubrimiento	Bajo este criterio se define el tipo de información que se necesita para caracterizar el consumo de energía de cada uno de los sectores de demanda de energía y el cubrimiento en los distintos sectores y tecnologías
Alcance y Base Emprica	Bajo este criterio se descartan las fuentes que no cumplen con las necesidades de información y se identifican los vacíos de datos que dificultan el cálculo del BEU
Autoridad, Credibilidad y Consistencia	Este criterio analiza la autoridad, credibilidad y consistencia de los datos y procura adoptar fuentes de información aquellas que cuentan con la validación de instituciones oficiales.
Actualidad	Para garantizar que los cálculos aproximen de forma asertiva la realidad del consumo de energía a nivel sectorial, se busco fuentes de información que se refieren al año 2015 o años cercanos que permitan hacer una proyección estadística confiable.
Objetividad y Calidad datos	El criterio de objetividad en este trabajo, procura hacer un filtro de fuentes de información que responda a las necesidades, así como, el planteamiento de una metodología de cálculo del Balance de Energía Útil para Colombia.
	Incertidumbre muy alta debido a un pequeño tamaño de la muestra, calculos con diferentes datos con incertidumbre distinta
Exactitud y Metodología	El criterio de exactitud es abordado desde la comparación de resultado de diferentes fuentes que permitan corroborar que la caracterización sectorial es asertiva. Descripción muy pobre, débil de los métodos usados o de meta datosSe tienen en cuenta tambien los diferentes métodos para obtener y calcular datos.


BEU Resultados Totales

La energía útil de todos los sectores equivale al 33% de la energía final. La eficiencia puede aumentar entre 1.6 para Ref. y 2.2 veces para BAT



El costo de la ineficiencia equivale a 6600 millones US\$ para el pot. de Referencia y 66% más para las mejores tecnologías (11.000 millones US\$)

Recomendaciones Sector Transporte para actualizar el BEU

- 1. Instalación de data logger en todos los equipos de transporte masivo que permitan almacenar automáticamente información de recorrido en kilómetros, variaciones de altitud, carga de combustible y peso cargado.
- 2. Convenio con WAZE con el fin de obtener estadísticas (no en tiempo real) para conocer los recorridos de vehículos dentro de las ciudades, y carreteras
- 3. Creación de incentivos que permitan entregar información de tiempo real a los consumidores de energéticos para transporte. Un esquema similar para transporte de carga, incluyendo combustibles.
- 4. Crear sistemas de validación en los peajes para conocer los recorridos entre estos puntos, con el fin de obtener información en carreteras. Está información se obtiene en el peaje y se transmite sobre una base de tiempo especificada.
- 5. Romper con la cultura institucional representatividad estadistica, alcances innovadosos no encuentran resonancia en el mercado

Recomendaciones Sector Industria para actualizaciones futuras del BEU

- 1. Transferencia y actualización de importaciones de motores en el país y crear un inventario para los motores en la industria Colombiana
- 2. Realización de un programa dedicado exclusivamente al uso de Calor Directo
- 3. Levantamiento del estado actual de muchos de los hornos y acompanado de medidas en el marco de auditorias o mediciones prolongadas
- 4. Extensión del módulo de la EAM (DANE) y realizar un piloto de 100 a 200 empresas y profundizar en los usos de la energía consumida y la energía útil obtenida así como inventarios de diversas tecnologías. Sugerencia piloto con empresas de los 6 sectores más intensivos
- 5. Construir indicadores en algunos sectores industriales los cuales permiten crear comparaciones con otros países.
- Monitoreo y captura de datos en la industria en sinergia con la creciente digitalización y automatización de los procesos industriales en Colombia - > Pilotos y demonstraciones innovadoras
- 7. Base para la creación de un modelo ascendente detallado para la Industria e interactuar con modelos de demanda para escenarios de la UPME

Recomendaciones para las actualizaciones futuras del BEU Sector Residencial

- 1. Realizar un piloto de 100 a 200 hogares junto con el DANE para obtener datos a través de la Encuesta de Calidad de Vida con respecto a una extensión del modulo de energía y profundizar en la tenencia de electrodomésticos y gasodomésticos, con y sin etiqueta, así como en los patrones de uso de los mismos. Inventarios de las diversas tecnologías en uso. Sugerimos hacer el piloto cubriendo todos los estratos y pisos térmicos.
- 2. Acorde con las necesidades de MRV en todos los programas de eficiencia energética, implementar un data panel con mediciones sobre los consumos de energía de los principales electrodomésticos utilizados en los hogares por estratos, por ciudades y por piso térmico. Se debe pensar en un número de equipos que se instalan por 8 días en diferentes hogares y luego se rotan para cubrir durante el año un numero representativo del sector.
- 3. Hacer pruebas de laboratorio sobre los consumos en cocción con gas natural, GLP, leña y electricidad (resistencia eléctrica e inducción). Probando diferentes clases de estufas, tecnologías y menús. También se debería hacer pruebas de laboratorio en los demás electrodomésticos con el fin de hacer seguimiento tecnológico.
- 4. Hacer seguimiento a las importaciones de electrodomésticos y al mercado nacional (fabricantes y comercializadores) con etiqueta.
- 5. Establecer una batería de indicadores por área, por habitante, por hogar, estrato, piso térmico, etc de consumos de energía.

Felipe A. Toro | Segunda Reunión de Progreso con UPME

Recomendaciones para las actualizaciones futuras del BEU Sector Residencial

6. No todo el incremento en la eficiencia se debe a un cambio tecnológico, las practicas en mantenimiento y reparación de muchos equipos residenciales juegan un papel en aumentar la eficiencia y reducir consumos de una manera más costo-efectiva. Sugerimos realizar proyectos de demonstración de buenas practicas observando los efectos en la reducción de los consumos.
7. El BEU del sector residencial junto con los datos de entrada permite ser usado para calibrar y apoyar modelos con más detalle el consumo de energía útil por tecnología y uso energético.
Recomendamos la creación de un modelo ascendente del sector residencial de simulación multivariable.

Recomendaciones para las actualizaciones futuras del BEU sector terciario

- 1. Realizar un piloto de 100 a 200 empresas junto con el DANE para obtener datos a través de la encuesta anual de servicios y la encuesta anual de comercio con respecto a la inclusión de un modulo de energía y profundizar en la tenencia de aparatos consumidores de energía eléctrica y gas, con y sin etiqueta, así como de los patrones de uso de los mismos. Inventarios de las diversas tecnologías en uso. Sugerimos hacer el piloto cubriendo tres pisos térmicos.
- 2. Acorde con las necesidades de MRV en todos los programas de eficiencia energética, implementar un data panel con mediciones sobre los consumos de energía de los principales equipos utilizados en las empresas de servicios y comercio, por ciudades y por piso térmico. Se debe pensar en un número de equipos que se instalan por 8 días en diferentes empresas y luego se rotan para cubrir durante el año un numero representativo del sector.
- 3 En el sector publico implementar sistemas de gestión municipal de la energía, lideradas por las alcaldías, con información de todo el sector público, educación, hospitales y las edificaciones destinadas a la administración.
- 4. Hacer seguimiento a las importaciones de equipos y al mercado nacional (fabricantes y comercializadores) con etiqueta.
- 5. Establecer una batería de indicadores de consumo de energía por área, por tipo de servicio y de negocio comercial por piso térmico, etc.

.

Felipe A. Toro | Segunda Reunión de Progreso con UPME

Recomendaciones para actualizaciones futuras del BEU sector terciario

- 6. No todo el incremento en la eficiencia se debe a un cambio tecnológico, las practicas en mantenimiento y reparación de muchos equipos utilizados en el sector juegan un papel en aumentar la eficiencia y reducir consumos de una manera más costo-efectiva. Sugerimos realizar proyectos de demonstración de buenas practicas observando los efectos en la reducción de los consumos.
- 7. El BEU del sector terciario junto con los datos de entrada permite ser usado para calibrar y apoyar modelos con más detalle el consumo de energía útil por tecnología y uso energético. Recomendamos la creación de un modelo ascendente del sector residencial de simulación multi-variable.
- 8. Evaluación expost de proyectos
- Estudios de caso de proyectos de Eficiencia Energética, Cogeneración a mediana y pequeña escala, Generación distribuida con el fin de determinar
 - Aspectos técnicos, operativos, legales, reglamentarios, financieros,
 - Costos Reales de Implementación
 - Barreras encontradas y superadas en la implementación
 - Beneficios reales , Rentabilidad del proyecto

Recomendaciones Sector Servicios para actualizaciones futuras

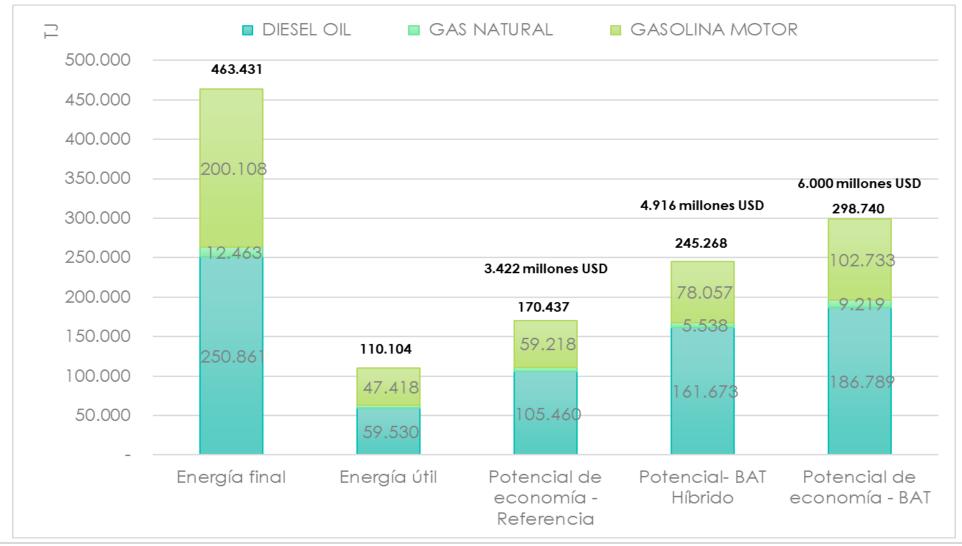
Sistema de Información / Plataforma en UPME/Ministerio MME / Otras agencias

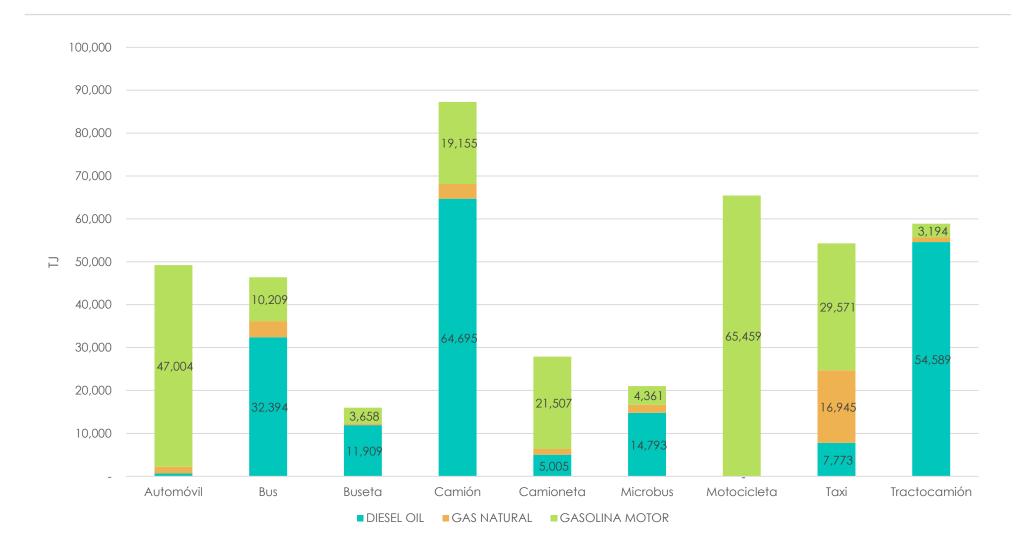
- 1. Información sobre tecnologías eficientes
- 2. Listado SIN GARANTIA de proveedores de equipos y servicios
- 3. Software interactivo que permita evaluar las bondades de las medidas de eficiencia energética, con indicadores sencillos como tiempo de repago, de manera amigable, sencilla y confiable
- 4. Resultados de evaluaciones expost / estudios de caso que muestren de manera contundente los beneficios de los proyectos

EVALUACION EXPOST DE PROYECTOS

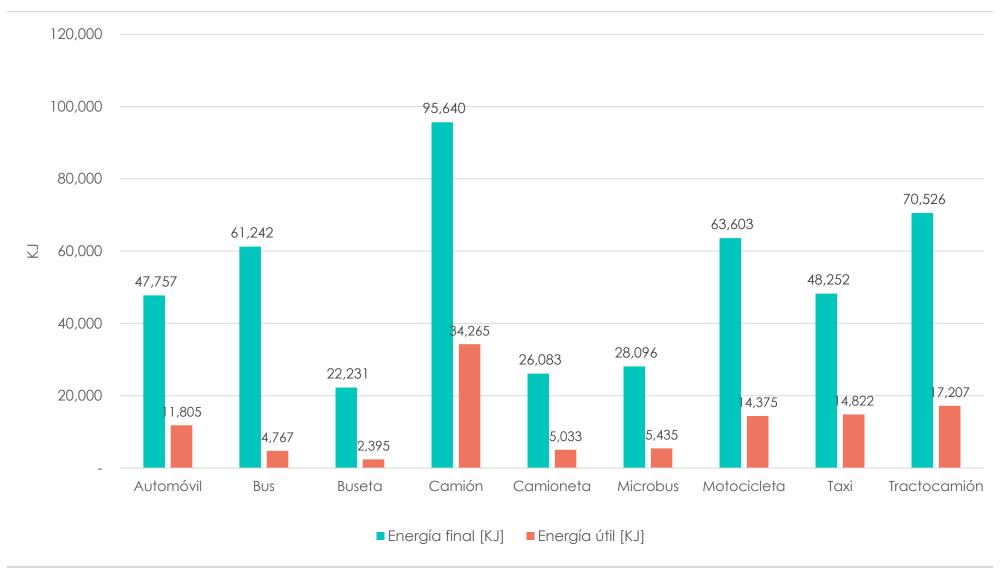
- Estudios de caso de proyectos de Eficiencia Energética, Cogeneración a mediana y pequeña escala, Generación distribuida con el fin de determinar
 - Aspectos técnicos, operativos, legales, reglamentarios, financieros,
 - Costos Reales de Implementación
 - Barreras encontradas y superadas en la implementación
 - Beneficios reales, Rentabilidad del proyecto

Sector Transporte

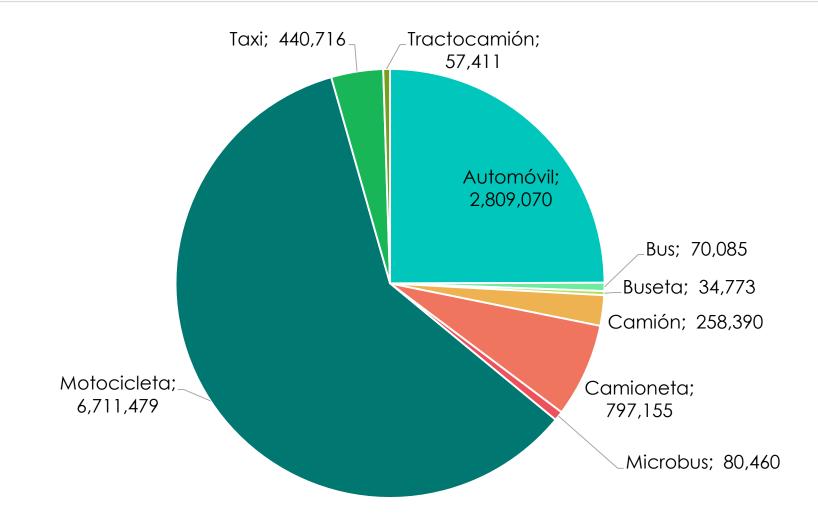

Resultados Finales


El 24% de la energía final del sector es útil. El potencial del sector puede aumentar entre 1.5 y 2.7 veces la energía útil.

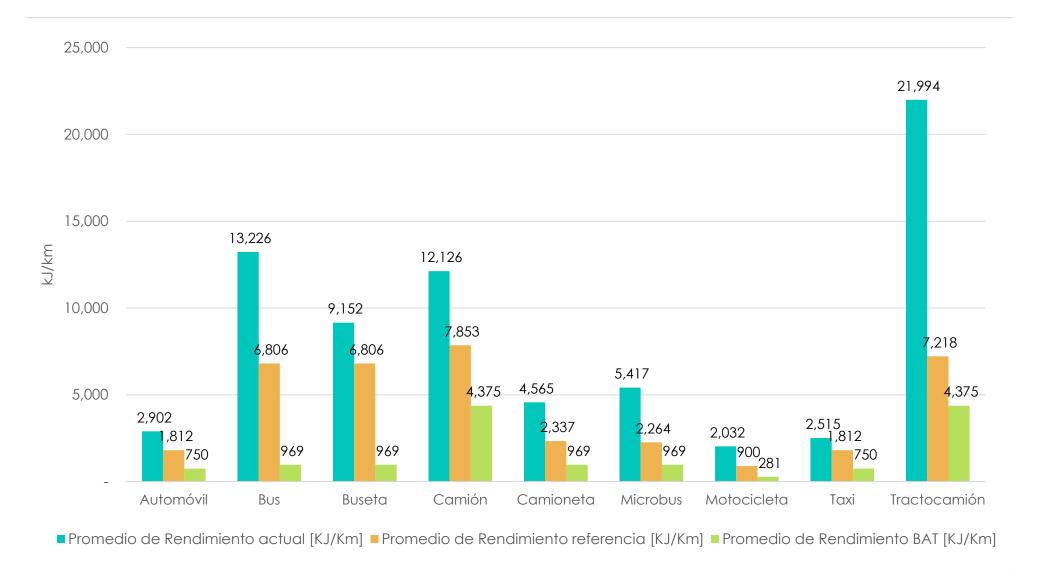
Distribución de energía final en el sector transporte en Colombia (494 560 TJ)



Energía útil y energía final por vehículo



Parque vehicular 2015 asciende a 11.910.720 Vehículos (RUNT)



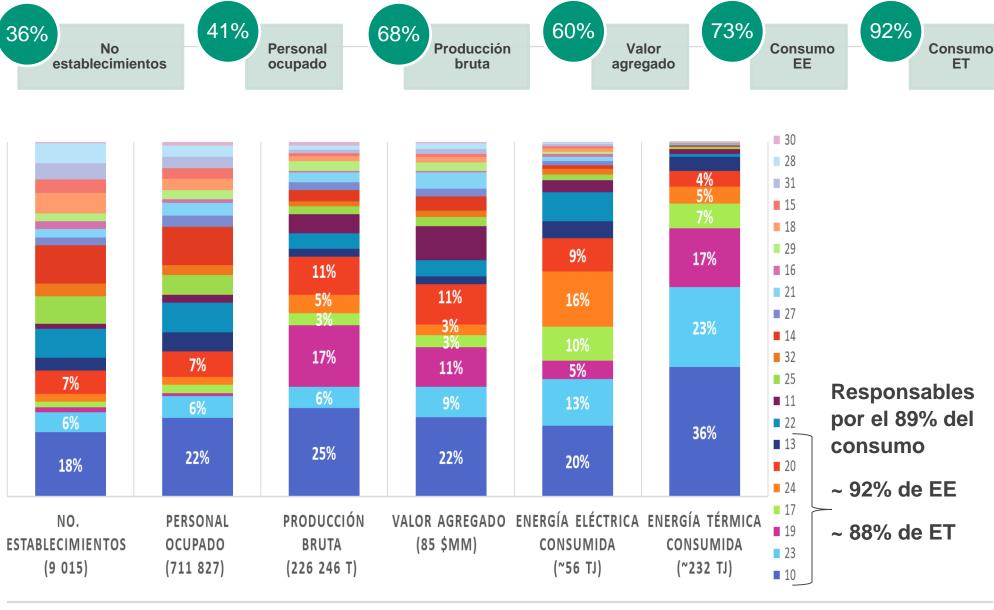
Rendimientos actuales del parque automotriz para BEU

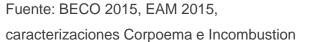
Rendimientos actuales del parque automotriz para BEU (KJ/KM)

	Pasajeros					Carga				
			Privado			Público			Carga	
Energético		Automóvil	Camioneta	Moto	Taxi	Bus	Buseta	Microbus	Camión	Tractocamión
	ACPM	2.798	4.305	1.124	2.255	11.800	8.083	4.931	9.700	16.167
Bogotá	Gasolinas	3.042	4.680	1.221	2.452	15.209	13.083	5.360	10.864	17.575
	GNV	2.864	2.864	3.723	2.864	6.895	9.929	4.231	10.343	19.597
	ACPM	2.798	5.891	1.131	2.238	11.952	9.148	4.931	9.700	15.316
Barranquilla	Gasolinas	3.042	6.404	1.229	2.433	15.599	13.519	5.360	24.334	34.763
	GNV	2.864	3.723	3.723	2.864	16.122	9.309	8.274	15.514	33.849
	ACPM	2.798	5.011	1.136	2.238	11.839	8.083	4.938	16.167	20.786
Medellín	Gasolinas	3.042	5.448	1.235	2.433	13.982	9.657	5.368	10.767	16.667
	GNV	2.865	3.104	3.723	2.864	13.218	9.929	2.979	9.309	33.849
	ACPM	2.798	5.087	1.153	2.238	12.227	9.209	4.931	15.000	18.654
Cali	Gasolinas	3.042	5.531	1.254	2.433	14.897	11.163	5.360	10.864	20.279
	GNV	2.866	2.866	3.723	2.864	16.189	10.638	9.309	8.462	19.597
	ACPM	2.798	5.011	1.136	2.243	11.952	8.596	4.932	11.951	17.478
Nacional	Gasolinas	3.042	5.448	1.235	2.438	14.897	11.643	5.362	12.576	20.515
	GNV	2.865	3.104	3.723	2.864	11.612	9.929	4.998	10.343	24.823

Incertidumbres observadas a lo largo del ejercicio

Uso	Entradas	Cubrimiento	Base Empirica	Consistencia	Robusto
FM Auto	RUNT				
	Rendim.				
	Distancia				
FM Carga	RUNT				
	Rend.				
	Dist.				
FM Motos	RUNT				
	Rendim.				
	Distancia				
Código		Baja	Media	Alta	


Sector Industria

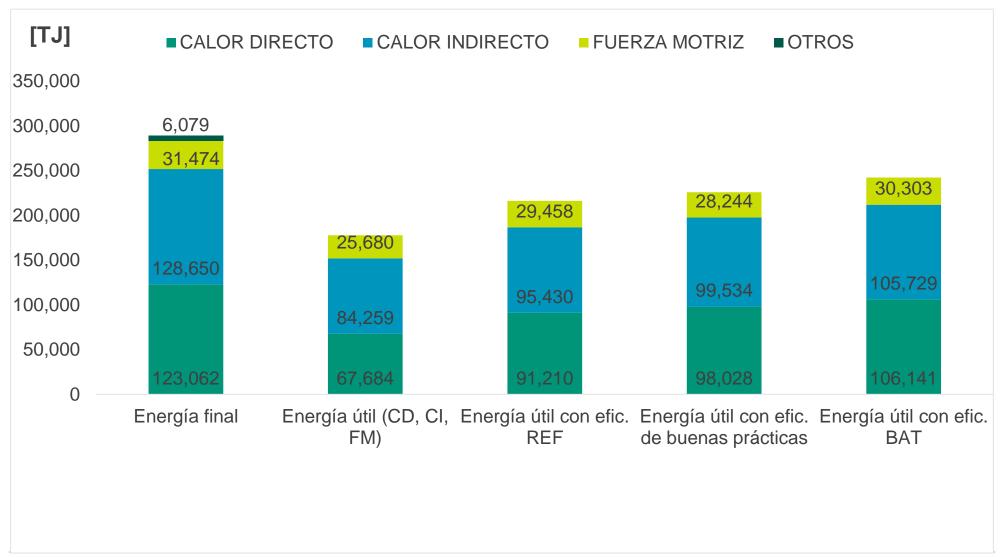

Discusón inicial de resultados

Distribución de la energía eléctrica en usos - metodología OLADE

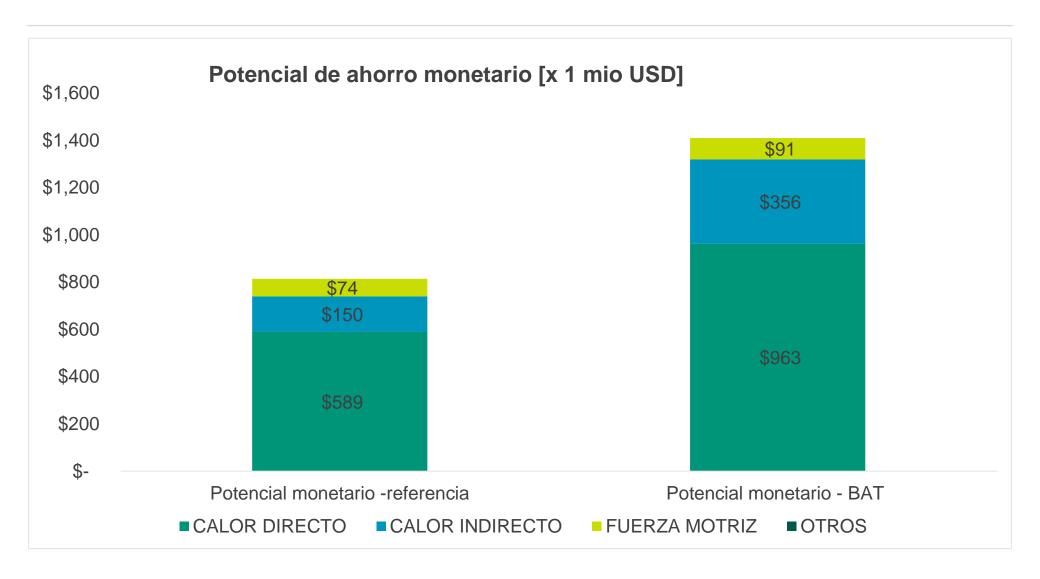
			Energía Eléctrica						
Rama	Código	Agrupación subsectores	Aire acondicionado	Fuerza Motriz	Iluminación	Refrigeración	Calor Directo	Calor Indirecto	Otros Usos
1	10, 11, 12	Productos alimenticios, Elaboración de bebidas, Productos de Tabaco	3.2%	70.8%	5.8%	17.8%	0.0%	0.4%	2.1%
2	13, 14, 15	Productos textiles, prendas de vestir, Marroquinerías	4.8%	81.7%	9.7%	0.2%	0.0%	1.7%	1.9%
3	17,18	Papel y cartón e Imprenta	3.4%	91.6%	2.6%	0.0%	0.0%	1.5%	0.9%
4	16, 31	Maderas, Muebles, colchones y somieres	0.0%	94.7%	4.0%	0.0%	0.0%	0.0%	1.2%
5	20, 21, 22	Sustancias y productos químicos, Productos farmacéuticos, Productos de caucho y de plástico	3.9%	80.9%	4.5%	3.0%	5.5%	0.0%	2.2%
6	23	Producción de Cemento							
7	23	Productos minerales no metálicos (Piedras, vidrio, cerámicas, otros no metálicos)	0.7%	87.2%	4.2%	6.8%	0.0%	0.0%	1.0%
8	24, 25, 26	Productos metalúrgicos básicos, Productos elaborados de metal (No maq. y equipo)	0.3%	55.9%	3.7%	0.1%	39.4%	0.0%	0.5%
9	27, 28, 29, 30	Maquinaria y equipos	5.4%	74.6%	8.9%	0.1%	6.9%	2.1%	2.1%
10	32	Otras Industrias Manufactureras	0.0%	89.9%	7.8%	0.0%	0.0%	0.0%	2.3%

Distribución de combustibles en usos - metodología OLADE

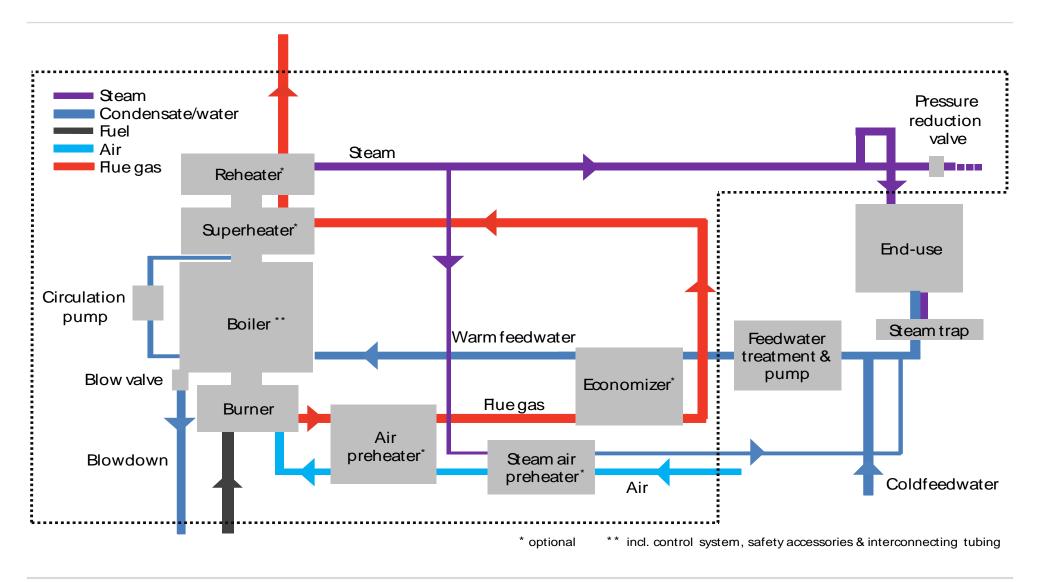
				Combustibles	sólidos		Gas I	Natural		Otros	
Rama	Código	Agrupación subsectores	Calor Directo	Calor Indirecto	Otros Usos	Calor Directo	Calor Indirecto	Otros Usos	Calor Directo	Calor Indirecto	Otros Usos
1	10, 11, 12	Productos alimenticios, Elaboración de bebidas, Productos de Tabaco	5.2%	94.8%	0.0%	4.1%	95.8%	0.0%	5.0%	94.9%	0.0%
2	13, 14, 15	Productos textiles, prendas de vestir, Marroquinerías	6.8%	93.2%	0.1%	10.1%	89.8%	0.1%	21.2%	78.7%	0.1%
3	17,18	Papel y cartón e Imprenta	0.0%	100.0%	0.0%	1.1%	98.9%	0.0%	2.1%	97.9%	0.0%
4	16, 31	Maderas, Muebles, colchones y somieres	8.9%	91.1%	0.0%	44.7%	55.3%	0.0%	23.0%	77.0%	0.0%
5	20, 21, 22	Sustancias y productos químicos, Productos farmacéuticos, Productos de caucho y de plástico	0.8%	99.2%	0.0%	63.2%	36.8%	0.0%	66.5%	33.5%	0.0%
6	23	Producción de Cemento									
7	23	Productos minerales no metálicos (Piedras, vidrio, cerámicas, otros no metálicos)	100.0%	0.0%	0.0%	80.6%	19.4%	0.0%	88.7%	11.3%	0.0%
8	24, 25, 26	Productos metalúrgicos básicos, Productos elaborados de metal (No maq. y equipo)	96.8%	3.2%	0.0%	98.8%	1.2%	0.0%	96.3%	2.7%	1.0%
9	27, 28, 29, 30	Maquinaria y equipos	93.3%	6.7%	0.0%	80.7%	19.3%	0.0%	92.7%	7.3%	0.0%
10	32	Otras Industrias Manufactureras				100.0%	0.0%	0.0%	100.0%	0.0%	0.0%


Fuente: BECO 2015, EAM 2015, caracterizaciones Corpoema e Incombustion

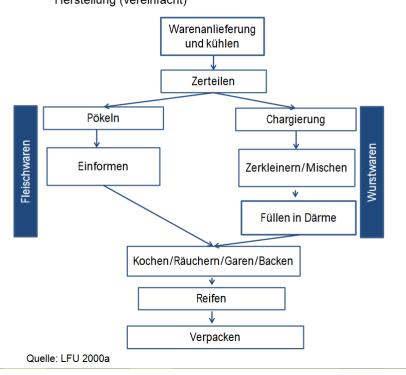
La energía útil de la industria corresponde a un 62% de la final

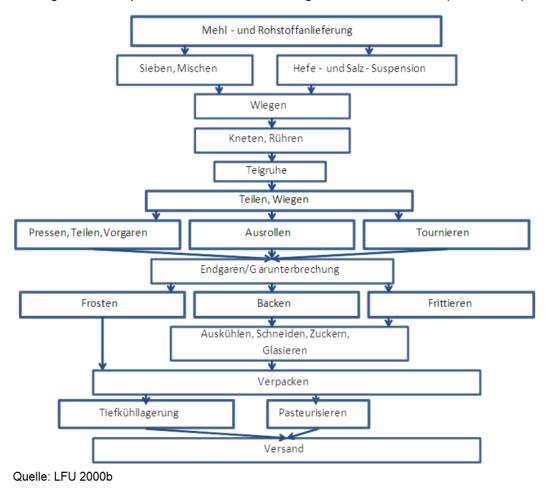


El costo de la ineficiencia varia entre 800 a 1400 millones de US\$



Situación especial de la industria: Ejemplo Caldera y Vapor

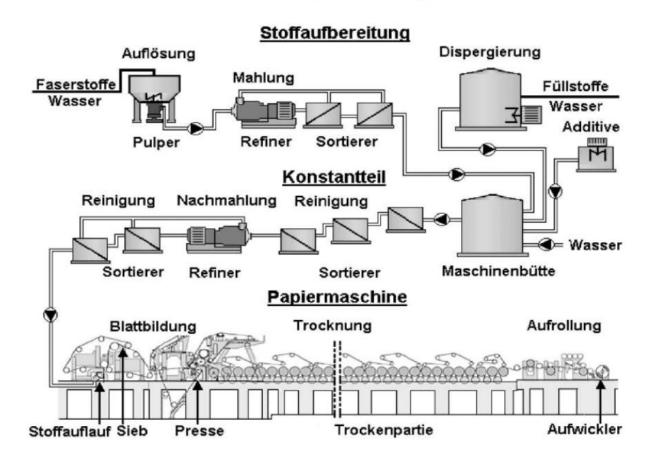




Situación especial de la industria: Ejemplo producción de alimentos

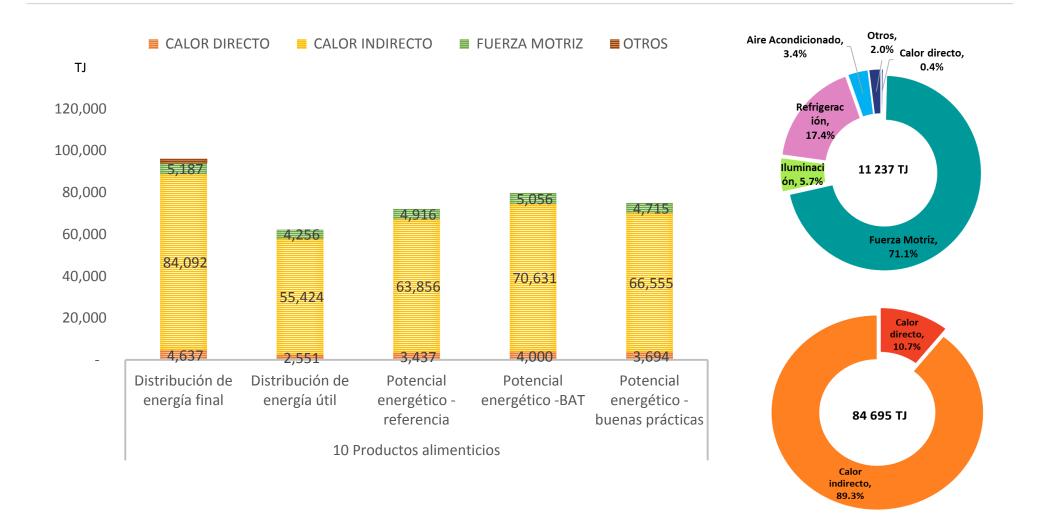
Beispielhafte Prozessdarstellung bei der Fleisch- und Wurstwaren-Abbildung 9-4: Herstellung (vereinfacht)

Beispielhafte Prozessdarstellung einer Großbäckerei (vereinfacht) Abbildung 9-6:

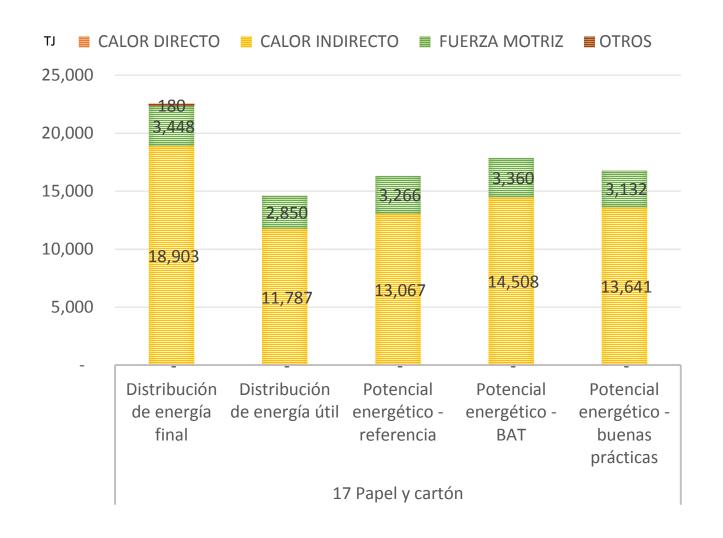


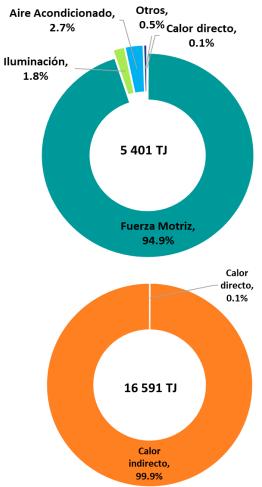
Situación especial de la industria: Ejemplo producción de papel

Abbildung 6-5: Prozessschritte bei der Papierherstellung

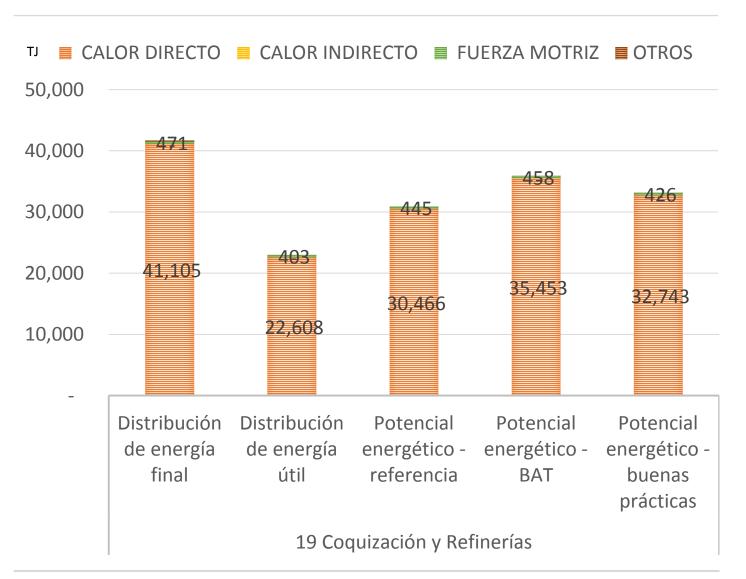

Quelle: Stumm 2007

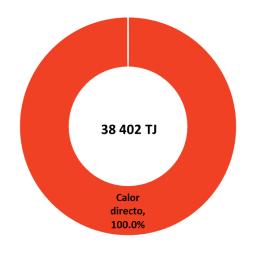
Producción de alimentos



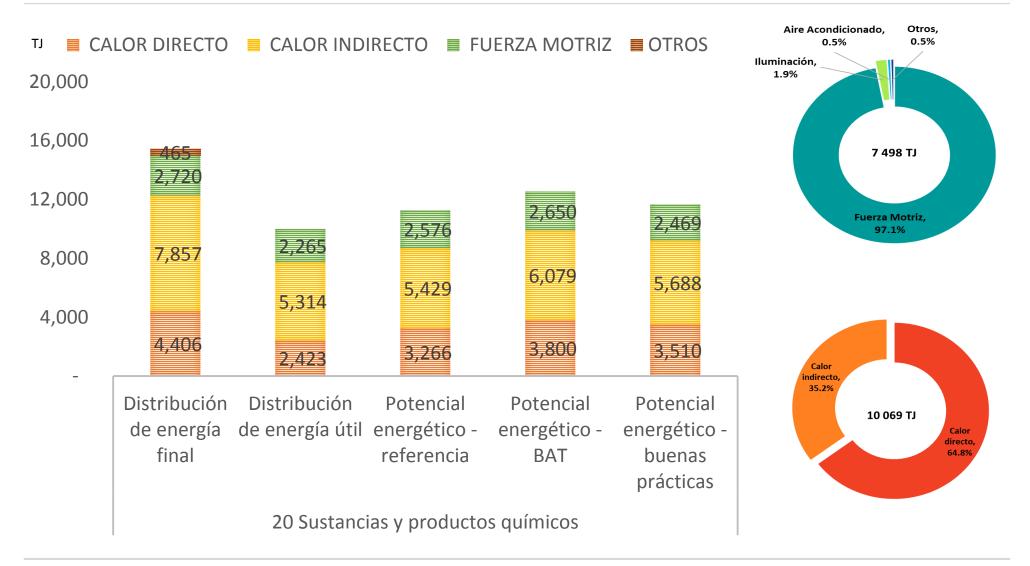


Producción de Papel y Cartón

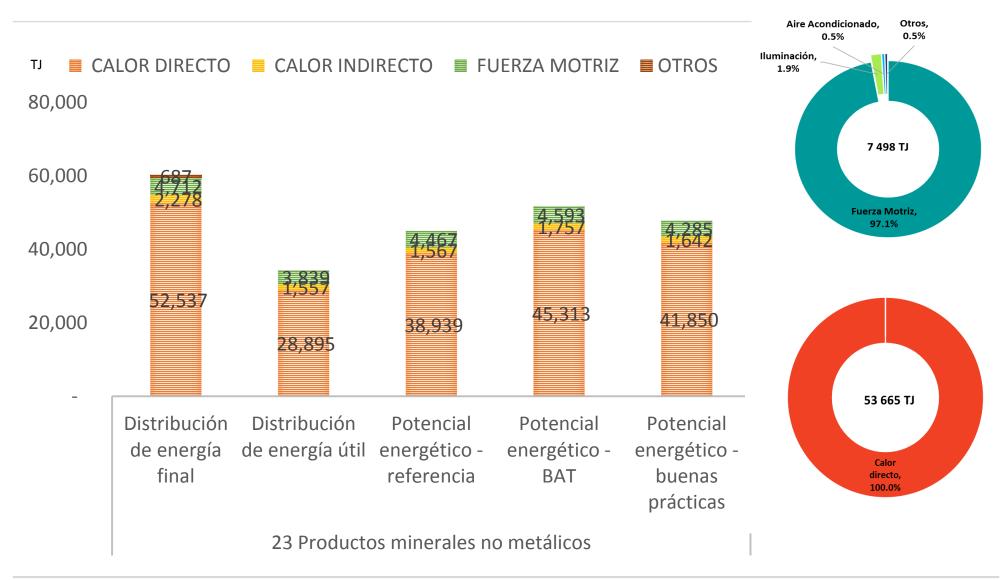




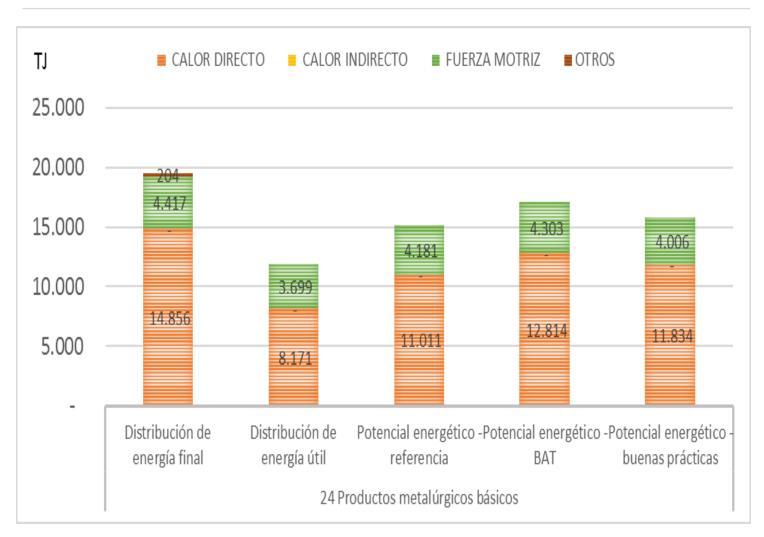
Coquización y Refinerias

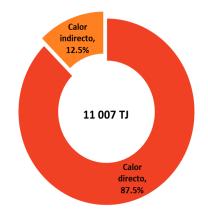


Producción de Sustancias y Productos Químicos



Producción de Minerales no metálicos

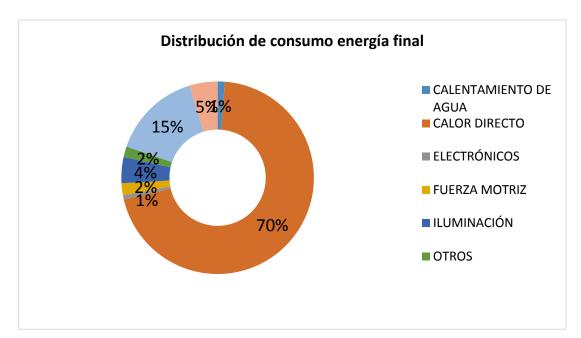


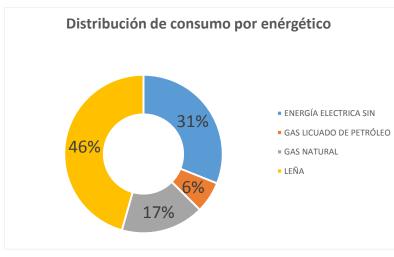


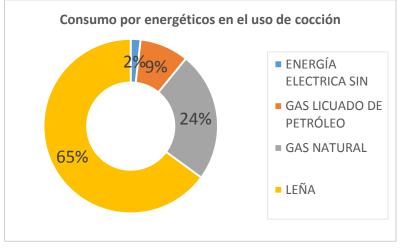
Producción de Metalurgicos básicos

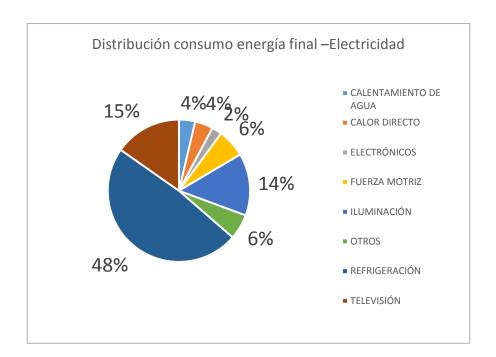
Incertidumbres Industria

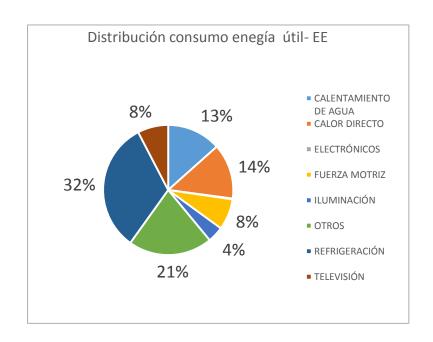
Uso	Entradas	Cubrimiento	Base Empirica	Consistencia	Robusto
Fuerza Motriz	Pot. Instalada				
	Cantidad				
	Eficiencias				
Calor Indirecto	Caracteriz.				
	Capacidad				
	Factor Util.				
Calor Directo	Producc.				
	Indicador				
	Eficiencia				
Código		Baja	Media	Alta	

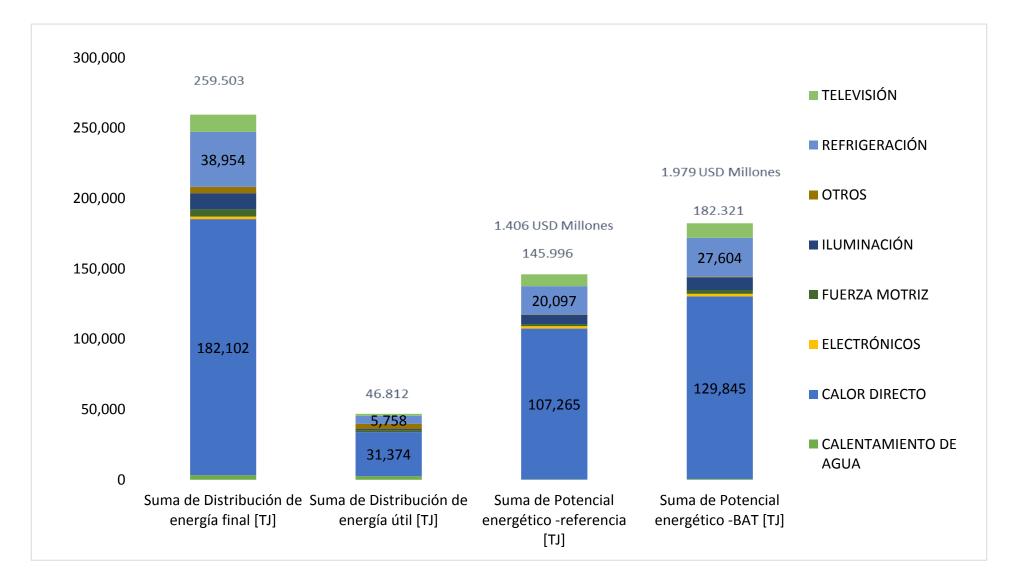

Sector Residencial y Servicios


Objetivos, Metodología, Herramienta, Primeros Resultados, Alcance esperado

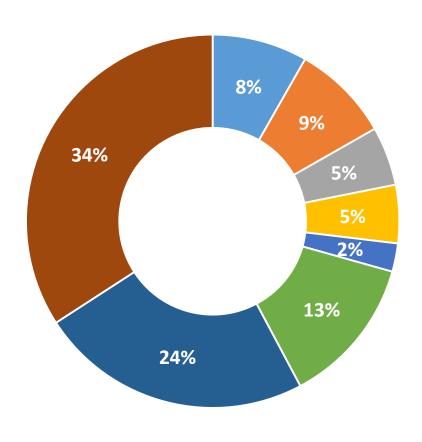



En Gas Natural, GLP y Leña más de 92% de energía final corresponde a Cocción (Calor Directo)





Los Usos con mayor potencial de ahorro son Calor Directo, Refrigeración y Televisión



En Gas Natural, GLP y Leña más de 92% de energía final corresponde a Cocción (Calor Directo)

Distribución consumo enegía final -EE

15% 14% 6% 48% ■ CALENTAMIENTO DE AGUA CALOR DIRECTO ■ ELECTRÓNICOS FUERZA MOTRIZ ILUMINACIÓN OTROS ■ REFRIGERACIÓN ■ TELEVISIÓN

Distribución consumo enegía útil- EE

Distribución de energía final, energía útil y potenciales energéticos por usos

100% 3% 5% 6% 6% 12% 15% 14% 15% **TELEVISIÓN** 8% 80% REFRIGERACIÓN 4% 4% 5% 2% ■ OTROS ■ ILUMINACIÓN 60% FUERZA MOTRIZ ■ ELECTRÓNICOS CALOR DIRECTO 40% 67% 73% 70% 71% CALENTAMIENTO DE AGUA 20% 5% 0% Suma de Distribución de energíaSuma de Distribución de energía Suma de Potencial energético - Suma de Potencial energético -

referencia [TJ]

BAT [TJ]

final [TJ]

120%

útil [TJ]

Eficiencias para calentamiento de agua

Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
ito de agua	1.1.1. Calentador de paso a Gas	Gas Natural	83%	Tomado de retiq cat C, promedio de tamaño 11 l/min. Y etiqueta brasilera	87%	cat A retiq	95%
Calentamiento de agua		GLP	83%	Igual al anterior, a pesar de que en Colombia el retiq no lo contempla	87%		95%
	1.1.2. Calentador de paso eléctrico o calentador eléctrico con acumulación	Energía eléctrica	70% y 90%	Tipo acumulador 70% cat C retq, de paso 90%	71% y 95%	retiq cat A y ref 90	95%

Eficiencias para Calor directo

Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
		Leña	3% y 15%	15% si se considera un solo menu y 3% si se considera el día completo con consumos medidos según est UPME	20% y 30%	mejorar regimen de uso y 30 con estufas eficientes	50%
		Carbón leña	30%	Menos humos. 30 o mas según sea cerrada o abierta	40%	mejorar regimen de uso y 30 con estufas eficientes	60%
	1.2.1. Estufa to 1.2.2. Horno microondas	Gas natural	57% y 35%	57 del quemador según cat C retiq y 35 Según mediciones universidad nacional quemador + olla	61% y 40%	Categoria A retiq y mejora de quemador y bateria de ollas con diseño	70 y 50%
1.2. Calor directo		GLP	59% y 38%	59 combustion quemador y 38 Según mediciones unal 1998	63% y 42%	Categoaria A retiq y mejora de quemador y bateria de ollas con diseño	70 y 50%
		Energía eléctrica	70%	mediciones unal 1998	80%	con mejora de aislamiento inferior y bateria de ollas con diseño	90%
		Energía eléctrica	50%	de reglamento brasilero cat C.	56%	cat A reglamento Brasil	70%
	1.2.3. Plancha	Energía eléctrica	80%	A partir de perdidas en el diseño, parte superior.	85%		90%

Eficiencias para Calor directo

Le	ña	Gas natural		
14	kilos/dia	150	litros/persona/di a	
18	MJ/kg	0,15	m3	
252	MJ/día	44	Mj/m3	
63	MJ/díaPax	6,6	MJ/persona/dia	
		10,5%		
	Eficiencia	3,7%	35%	

Eficiencias para Fuerza Motriz

Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
1.3. Fuerza motriz	1.3.1. Lavadora	Energía eléctrica	22%	el valor actual es 0,045 kwh/ciclo/kg y el valor mayor tecnologico es 0,01, o su equivalente por 168 ciclos por año por comparacion resulta 22%. Cat D reglamento brasilero	33%	por cambio tecnologico se puede mejorar a 0,03 kwh/ciclo/kg o su equivalente por 168 ciclos por año por comparacion resulta 33%. Cat A reglamento brasilero	50%
	1.3.2. Ventilador	Energía eléctrica	32%	ver recuadro	42%	Categoria A brasilera	67%

Eficiencias para Fuerza Motriz

	Lavadoras							
Factores	Rendimi	ento energetico						
	kWh/ciclo/kg							
22%	0,045	Promedio nal de caracterizaciones						
		Coincide con etiqueta brasilera Cat D						
33%	0,03	Referente Colombiano						
50%	0,02	BAT						
100%	0,01	En laboratorio						

Ventiladores									
m3/s/W									
0,13666667	0,633333333								
pedestal/pa red	techo								
0,02	0,03	standard							
0,0041	0,019	Cat A							
0,0033	0,014	Cat D							
21%	63%	42%							
17%	47%	32%							

Eficiencias para Fuerza Motriz

	Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
		1.5.1. Nevera	Energía eléctrica	14%	Recuadro iluminacion	30%	Recuadro refrigeracion	50%
1.5.	Refrigeración	1.5.2. Aire acondicionado	Energía eléctrica	30%	Límite inferior etiqueta E Retiq = 2,7 W/W, Promedio nacional EER =9,21 btu/h/W	41%	Límite inferior etiqueta A Retiq EER = 3,75 W/W EER = 12,8 btu/h/W	

Aire Acondicionado										
	2015	retiq	BAT	Teorico						
	3,412	3,412								
W/W	2,7	3,75	5,86	9,1						
Btu/h/W	9,21	12,80	20,00	31						
	30%	41%	65%	100%						

Refrigeracion kWh/año/litro	
K VV II/ dillo/ littlo	
2,16promedio anual 2	.015
1mejor en el merca	ado
0,6BAT	
0,3Teórico Carnot	
14%promedio anual	
30%Etiqueta A	
50%BAT	
33738711	

Eficiencias para Iluminación

Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
1.4. Iluminación	Iluminacion	Energía eléctrica	6%	Recuadro iluminacion	1460%	Recuadroilumina cion	29%

		Iluminación		
	# ECV	lm/W		
Incandes	1,42	14	19,9	
FL	0,13	40	5,2	
LFC	3,5	50	175,0	
LED	0,32	80	25,6	
	5,37		225,7	
	Promedio	42	lm/W	
	limite			
	teorico	683	lm/W	
		6,2%		
	mejor			
	colombiano		100	lm/W
			14,6%	
	BAT	29%	200	lm/W

Eficiencias para TV

	Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
1	.6. Televis ión		Energía eléctrica	11%	acorde al recuadro considerando 60% led y 40% crt	35%	considerando 100% led de IEE promedio de 0,2	70%

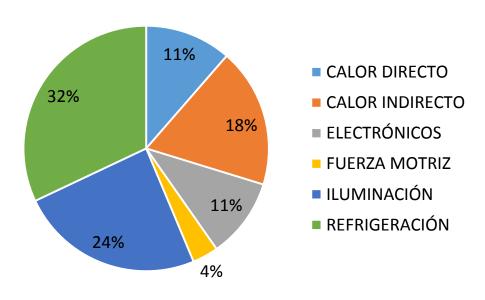
Televisores	tamaño en pulgadas	А	Pref	IEE CRT	IEE LED	IEE plasma	CRT Watt	LED Watt	Plasma Watt
pulgada=0,2									
54 dm	19	11,6	70,3	1,14	0,30		80	21	
pref=Pb+A*									
4,3224	24	18,6	100,3	1,20	0,45		120	45	
A en dm2	32	33,0	162,8	1,11	0,37	0,98	180	60	160
	42	56,9	266,0		0,38	0,83		100	220
	52	87,2	397,0		0,30	0,76		120	300

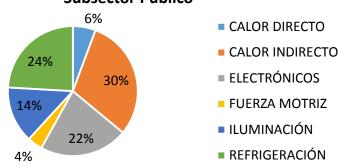
11%	Promedio	
IEE Teorico	0,07	100%
IEE BAT	0,1	70%
Mejor local	0,2	35%
Promedio nal	0,75	11%

Eficiencias para TIC

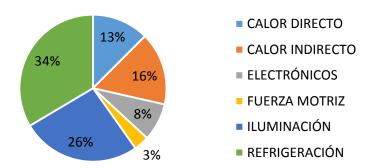
	Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
1.7.	Electrónic os	1.7.1. Computador	Energía eléctrica	2%	Asumiendo en 2015 60% CRT y 40% LED	33%	Portatiles de 3W	50%

	Computadores								
	esktop		Portatil W						
CRT W	LCD W	LED	Mejor nal	BAT	Teócico				
100	25	6	3	2	1				
1%	4%	17%	33%	50%	100%				
60%	40%								
Promedio	2%								



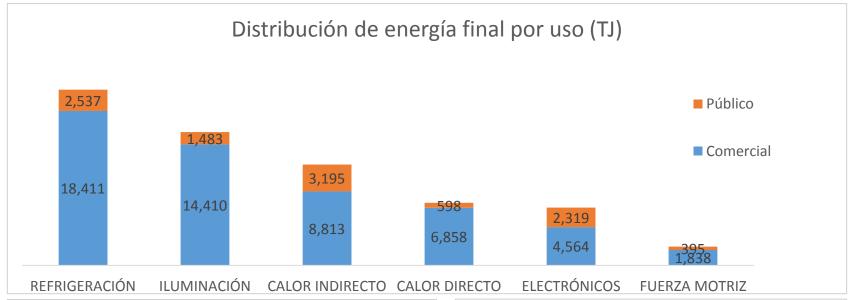


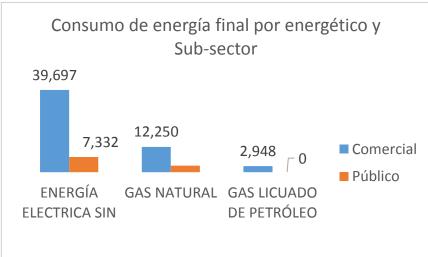
Sector Terciario: Participación de usos para los sub-sectores

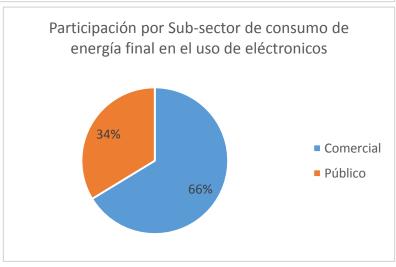

Participación por usos de enegía final sector Terciario

Participación por usos de enegía final Subsector Público

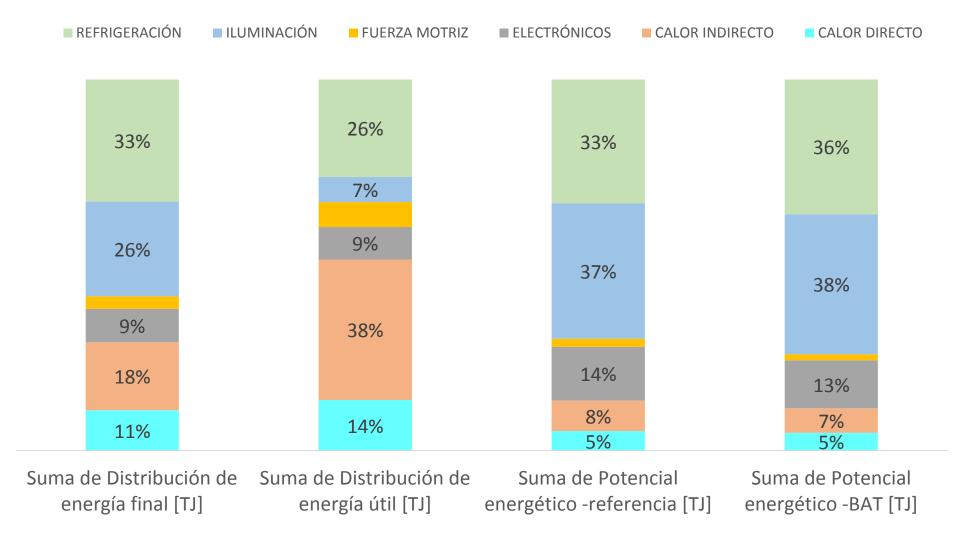
Participación por usos de enegía final Subsector Comercial



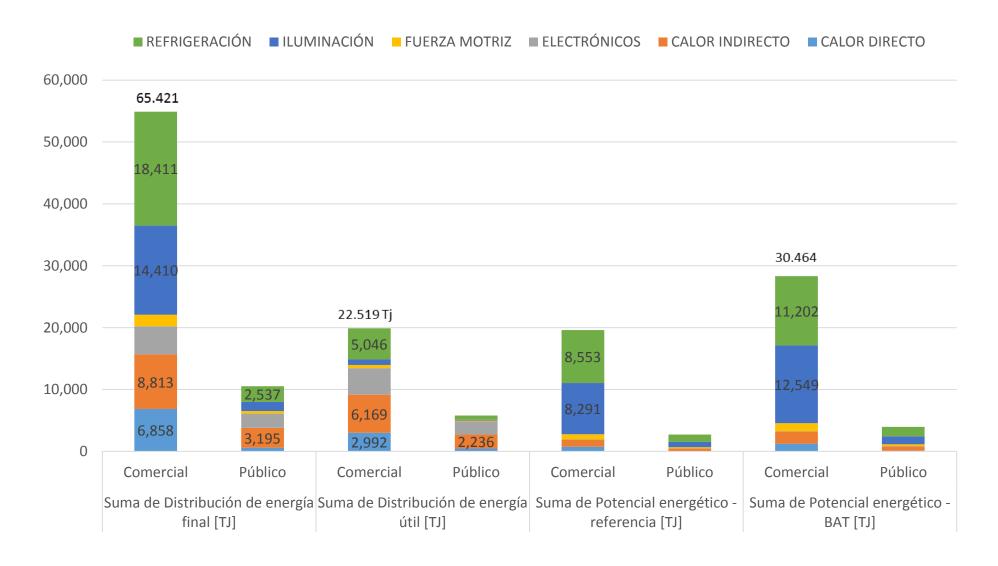




Sector Terciario: Participación de usos para los sub-sectores



Sector Terciario: Resultados finales



Sector Terciario: Resultados finales

Calor Indirecto

Uso	Equipo	Energético	factor de eficiencia actual (%)	Referente Colombiano (%)	BAT (%)
2.1. Calor indirecto	Calderas	Gas Natural	70%	80%	84%

Electrónicos

	Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
2.7.	Electrónic	2.7.1. Computador	Energía eléctrica	4%	Acorde a recuadro 2015 60% crt y 40% Icd	8%	3 W mejor tecnología BAT 2 W	17%
	OS	2.7.2. Computador portátil	Energía eléctrica	33%	6 W promedio	60%	3 W mejor tecnología BAT 2 W	100%

Calor Directo

Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
		Leña	15%		35%		50%
		Carbón leña	30%		35%		50%
	2.2.1. Estufa	Gas natural	40%		45%		50%
2.2. Calor dir	octo	GLP	42%		47%		50%
2.2. Calof uii	ecto	Energía eléctrica	80%		90%		99%
	2.2.2. Horno microondas	Energía eléctrica	50%		56%		99%
	2.2.3. Plancha	Energía eléctrica	80%	a partir de perdidas en el diseño, parte superior.	85%		

•Fuerza Motriz

Uso	Equipo	Energético	factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
2.3. Fuerza motriz	2.3.1. Lavadora	Energía eléctrica	25%	el valor actual es 0,04 kwh/ciclo/kg y el valor mayor tecnologico es 0,01, o su equivalente por 168 ciclos por año por comparacion resulta 25%.	50%	por cambio tecnologico se puede mejorar a 0,02 kwh/ciclo/kg o su equivalente por 168 ciclos por año por comparacion resulta 50%.	
	2.3.2. Bombas de agua Ventiladores Ascensores Escaleras automaticas	Energía eléctrica	68%	ver recuadro debajo de fuerza motriz	83%	Ver recuadro, VSD (15%) y 5% por cambio de motor	88%

	Ventilado	ores						
	m3/s/W							
pedestal /pared								
0,02	0,03	standard						
0,01	0,025	BAT						
0,0041	0,019	Etiqueta A						
0,0033	0,014	promedio nal						
21%	63%	Etiqueta A	42%					
17%	47%	Prom nal	32%					
50%	83%	BAT	67%					

•Iluminación

	Uso	Factor de eficiencia actual (%)	Comentario	Referente Colombiano (%)	Comentario	BAT (%)
2.4.	Iluminación	9%	Ver recuadro	15%		29%

	Iluminacion Terciario					
	%	lm/W				
Incandes	3	14	0,4			
Т8	39	80	31,2			
T12	7	45	3,2			
Halogena	7	18	1,3			
Haluro metalico	23	80	18,4			
LFC	20	40	8,0			
		Rendimiento	Factor de efic			
Promedio		62,4	9%			
Mejor colombiano		100	15%			
BAT		200	29%			
Teorico		683	100%			

Refrigeración

	Uso	Equipo	Energético	factor de eficiencia actual (%)	Referente Colombiano (%)	Comentario	BAT (%)
		2.5.1. Nevera		25%	30%	5 kWh/m2 sobre un maximo de 3	50%
2.	.5. Refrigeración	2.5.2. Aire acondicionado	Energía eléctrica	29%	45%	ver recuadro de aire acondicionado comercial	61%

Refrigeración Terciario							
	Rendimiento	Unidad	Factor de efic				
Promedio							
nacional	12	kWh/día/m²	25%				
Mejor							
colombiano	10	kWh/día/m²	30%				
BAT	6	kWh/día/m²	50%				
Laboratorio	3	kWh/día/m²	100%				

	Aire acondicionado Terciario							
	Chiller por Agua	Chiller por aire	Compres or de tornillo	Mini Split	Split	Ventana		
Potencia	6584	3575	279	1646	2086	75		
	46%	25%	2%	12%	15%	1%		
	65%	35%						
consumo	2418804	1419019	83628	437363	612219	10393		
	49%	28%	2%	9%	12%	0%		

Refrigeración

	Uso	Equipo	Energético	factor de eficiencia actual (%)	Referente Colombiano (%)	Comentario	BAT (%)
		2.5.1. Nevera		25%	30%	5 kWh/m2 sobre un maximo de 3	50%
2.	.5. Refrigeración	2.5.2. Aire acondicionado	Energía eléctrica	29%	45%	ver recuadro de aire acondicionado comercial	61%

Refrigeración Terciario						
	Rendimiento	Unidad	Factor de efic			
Promedio						
nacional	12	kWh/día/m²	25%			
Mejor						
colombiano	10	kWh/día/m²	30%			
BAT	6	kWh/día/m²	50%			
Laboratorio	3	kWh/día/m²	100%			

Aire acondicionado Terciario								
	Chiller por Agua	Chiller por aire	Compres or de tornillo	Mini Split	Split	Ventana		
Potencia	6584	3575	279	1646	2086	75		
	46%	25%	2%	12%	15%	1%		
	65%	35%						
consumo	2418804	1419019	83628	437363	612219	10393		
	49%	28%	2%	9%	12%	0%		

Incertidumbres Residencial y Servicios

Uso	Entradas	Cubrimiento	Base Empirica	Consistencia	Robusto
Refrigeración	Pot. Instalada				
	Cantidad				
	Eficiencias				
Iluminación	Caracteriz.				
	Capacidad				
	Factor Util.				
Appliances	Producc.				
	Indicador				
Código		Baja	Media	Alta	

Muchas gracias

